Saturday, 23 March 2019

TO CHECK WHETHER A NUMBER IS PRIME OR NOT

         SHORT CUT PROCESS
TO CHECK WHETHER A NUMBER
            IS PRIME OR NOT

------------------- (  *   *  ) --------------------

** To check whether a number N is prime, adopt the following process

A) Take the square root of the number.

B) Round of the square root to the immediately lower integer. Call this number z.
For example if you have to check for 190, its square root will be 13... Hence, the value of z, is this will be 13.

C) Check for Divisibility of the number N by all prime numbers below z. If there is no prime number below the value of z which divides N then the number N will be prime.

TO ILLUSTRATE ::-

The value of √239 lies 15 and 16. Hence, take the value of z as 16.
Prime numbers less than 16 are 2,3,5,7,11and13,
239 is not Divisible by any of these.
Hence you can conclude that 239 is a prime number.

                 ENJOY MATHS

Wednesday, 20 March 2019

SEQUENCE AND SERIES

SEQUENCE AND SERIES
--------------------------------------------------------
1. DEFINITION ::

SEQUENCE :
A succession of terms a₁, a₂, a₃ ,a₄...... formed according to some rule or law.
Examples are 1,4 ,9 ,16,25
                          -1, 1,-1,1.....
                x/1! , x²/2!, x³/3!, x⁴/4!.....
It is not necessary for the terms to be unequal. A finite sequence has a finite (i.e. limited) number of terms, as in the first example above. An infinite sequence has an unlimited number of terms, i.e. there is no last term, as in the second and third examples.

SERIES :
The indicated sum of the terms of a sequence. In the case of a finite sequence a₁,a₂,a₃,........,aᵣ the corresponding series is a₁+a₂+a₃+...aᵣ = ʳ∑ᵢ aᵣ . This series has a finite or limited number of terms and is called a finite series.

2.
ARITHMETIC PROGRESSION (AP)

AP is a sequence whose terms increase or decrease by a fixed number. This fixed number is called the COMMON DIFFERENCE. If a is the first term & d the common difference, then AP can be written as a, a+d, a+2d, ......
  a+(n+d), .....

a) nᵗʰ term of this AP : :
      Tₙ= a+(n-1)d
      Where d = aₙ - aₙ₋₁
b) The sum of the first n terms ::
   Sₙ= n/2  (2a + (n -1)d) =n/2(a+l)
     where l is the last term.
c) Also nᵗʰ term Tₙ= Sₙ -  Sₙ₋₁

** NOTE **
a) Sum of n terms of an A. P. is of the form An²+Bn i.e. a quadratic expression in n, in such case the common difference is twice the coefficient of n² . i.e. 2A
b) nth term of an A. P. is of the form An+ B i.e. a linear expression in n, in such a case the coefficient of n is the common difference of the A. P. i.e. A.

3.  PROPERTIES OF A. P :

a) If each term of an A. P. is increased, decreased, multiplied or divided by the same nonzero number, then the resulting sequence is also an A. P.
b) Three numbers in A. P. can be taken as a - d, a, a+d ;
Four numbers in A. P. can be taken as a- 3d, a - d, a+ d, a + 3d.
Five numbers in A. P. a - 2d, a - d ,
  a, a + d, a + 2d .
Six terms are in A. P. a - 5d, a - 3d,
a - d, a+3d, a+5d etc.
c) The common difference can be zero, positive or negative.
d) The sum of the two terms of an AP equidistant from the beginning & end is constant and equal to the sum of first & last terms.
e) Any term of an AP (except the first) is equal to half the sum of terms which are equidistant from it.
aₙ = (1/2) (aₙ₋ₓ + aₙ₊ₓ), x < n.
For x=1, aₙ = (1/2)(aₙ₋₁ + aₙ₊₁),
For x= 2, aₙ =(1/2)(aₙ₋₂ + aₙ₊₂) and so on .
f) If a,b,c are in AP ⇒ 2b = a+c.

4. GEOMETRIC PROGRESSION(GP)

GP is a sequence of numbers whose first term is non-zero & each of the succeeding terms is equal to the proceeding terms multiplied by a constant. Thus in a GP the ratio of successive term is constant. This constant factor is called the COMMON RATIO of the series & is obtained by dividing any term by the immediately previous term. Therefore a, ar, ar², ar³, ar⁴, ... is a GP with 'a' as the first term & 'r' as common ratio.
a) nᵗʰ term Tₙ = a rⁿ⁻¹
b) Sum of the 1ˢᵗ n terms =
        Sₙ =   a(rⁿ - 1)  if r ≠ 1 and r >1
                    (  r - 1)
     And  a(rⁿ - 1)/(r - 1)  when r <1.
c) Sum of infinite GP when |r|<1
     and n -> ∞, rⁿ -> 0 S∞=a/(1-r)
                               where |r|<1

5.  PROPERTIES OF GP
a) If each term of a GP be multipled
or divided by the same non-zero, quantity, the resulting sequence is also a GP.
b) Any 3 consecutive terms of a GP can be taken as a/r, a, ar, ;
any 4 consecutive terms of a GP can be taken as a/r³, a/r, ar, ar³
& so on.
c) If a,b,c are in GP => b² = ac.
d) In an GP., the product of two terms which are at a equidistant from the first and the last term, is constant and is equal to product of first and last term.
e) If each term of a GP be raised to the same power, then resulting series is also a GP.
f) In a G. P every term (except first) is GM of its two terms which are at equidistant from it. i.e.
     tᵣ= √(Tᵣ₋ₓ Tᵣ₊ₓ), x < r.
g) In a finite G. P. the number of terms be odd then its middle term is the G. M. of the first and last term.
h) If the terms of a given G. P are choosen at right intervals, then the new sequence is also a GP.
I) If a₁,a₂ ,a₃....aₙ is a GP. of a non zero, non negative terms, then log₁log a₂,.... log aₙ is an A. P. and vice-versa.
j) If a₁,a₂,a₃,.... and b₁,b₂,b₃,..... are two G.P.′s then a₁b₁,a₂b₂,a₃b₃ .... is also in G.P.

6. HARMONIC PROGRESSION(HP)

A sequence is said to HP if the reciprocals of its terms are in AP.
If the sequence a₁,a₂ ,a₃ ,....aₙ is an HP then 1/a₁ ,1/a₂ ,.....1/aₙ is an AP and converse. Here we do not have the formula for the sum of the n terms of an HP. The general form of a harmonic progression is
1/a,1/(a+d) ,1/(a+2d),...
1/(a+(n-1)d).

**NOTE **
If a,b ,c are in HP ⇒b=2ac/(a+c)
                          or a/c=(a-b)/(b-c).

7.    MEANS

a).    ARITHMETIC MEANS
If three terms are in AP then the middle term is called the AM between the other two, so if a ,b ,c are in AP ,. b is AM of a and c.
      n-ARITHMETIC MEANS   
      BETWEEN TWO NUMBERS .
If a,b are any two given numbers and a, A₁, A₂, ....Aₙ ,b are in AP then A₁,A₂, ...Aₙ ,are n AM′s between a and b.
A₁= a+  (b-a)/(n+1),
A₂= a+ 2(b-a)/(n+1) ,...
A₁ = a+ (b-a)/(n+1)= a+d,
   = a+2d, ...Aₙ = a+nd ,
where d = (b-a)/(n+1).

*NOTE*
Sum of n AM′s inserted beetween a and b is equal to n times the single AM between a and b i.e.
  ⁿᵣ₌₁∑ Aᵣ =nA where A is single AM between a and b.

b) GEOMETRIC MEAN

If a,b ,c are in GP , be is the GM between a and c, b²=ac,
therefore b= √(ac)
n-GEOMETRIC MEANS
between a,b
If a,b are two given numbers and a, G₁ G₂,....Gₙ , b are in GP.
Then  G₁ ,G₂ , G₃ ....... Gₙ are n GMs between a and b.
G₁ = a(b/a)¹/⁽ⁿ⁺¹⁾, =or ar
G₂=a(b/a)²/⁽ⁿ⁺¹⁾ ....... =or ar²
Gₙ= a(b/a)ⁿ/⁽ⁿ⁺¹⁾   = or arⁿ
where r= (b/a)¹/⁽ⁿ⁺¹⁾

** NOTE **
The product of n GMs between a and b is equal to nᵗʰ power of the single GM between a and b i.e. ⁿᵣ₌₁π Gᵣ = (G)ⁿ where G is the single GM between a and b.

c) HARMONIC MEAN

if a, b,c are in HP, between a and c, then b= 2ac/(a+c).

**IMPORTANT NOTE**
(i) If A,G ,H ,are respectively AM , GM , HM between two positive number a and b then
   a) G²=AH (A,G ,H constitute a
        GP) 
   b) A ≥ G ≥ H
   c) A = G = H ⇒ a = b
(ii) Let a₁ ,a₂ ,.....aₙ be n positive
     real numbers , then we define
     their arithmetic mean (A),
     geometric mean (G) and
     harmonic mean(H) as
      A = a₁ + a₂+.....+ aₙ
                          n
     G = (a₁ a₂ ......aₙ)¹/ⁿ and
     H =                         n             
           (  1/a₁ + 1/a₂ +1/a₃ + ...1/aₙ)
it can be shown that A ≥ G ≥ H. Moreover equality at either place if and only if a₁ = a₂ = ...aₙ .

8. ARITHMETICO.GEOMETRIC SERIES.

A series  each term of which is formed by multiplying the corresponding term of an AP & GP is called the Arithmetico-Geometric Series, e.g. 1+3x+5x²+7x³+ ....
Here 1,3, 5,....are in AP &
1,x,x²,x³.... are in G. P.

SUM OF N TERMS OF AN ARITHMETIC-GEOMETRIC SERIES:

Let
Sₙ
=a+(a+d)r+(a+2d)r²+..
  (a+(n-1)d)rⁿ⁻¹

then Sₙ=   a   dr(1-rⁿ⁻¹)
               (1-r)          (1-r)²
           - (a+(n-1)d) rⁿ , r ≠ 1
                     1- r

SUM TO INFINITY

If | r | <1 and n - ∞ then
lim ₙ→∞ rⁿ =0.
S∞ =a/(1-r)+ dr/(1-r)².

SIGMA NOTATION

a) ⁿₓ₌₁∑(aᵣ ± bᵣ)=ⁿᵣ₌₁∑aᵣ ± ⁿᵣ₌₁∑bᵣ
b) ⁿᵣ₌₁∑kaᵣ =k ⁿᵣ₌₁∑aᵣ
c) ⁿᵣ₌₁∑ k = nk . where k is constant

10.      RESULTS

a) ⁿᵣ₌₁∑ r= n(n+1)/2 (sum of the
                first n natural numbers).
b) ⁿᵣ₌₁∑ r² = n(n+1)(2n+1)/6  (sum of
     the squares of the first natural
     numbers) .
c) ⁿᵣ₌₁∑ r³ = n²(n+1)²/4=(ⁿᵣ₌₁∑r)²   
    (Sum of the cubes of the first n
     natural numbers).
d) ⁿᵣ₌₁∑r⁴ = n(n+1)(2n+1)(3n²+3n-1) e)  ⁿᵣ₌₁∑(2r - 1)=n² (sum of first n
      odd natural numbers)
f) ⁿᵣ₌₁∑ 2r = n(n+1) (sum of first n
     even natural numbers).

** NOTE**
If nᵗʰ term of a sequence is given by
Tₙ = an³+bn²+cn+d where a,b,c,d are constants, then
sum of n terms is
Sₙ = ∑ Tₙ = a∑n³ +b∑n²+c∑n+∑d
This can be evaluated using the above results.

11.    METHOD OF DIFFERENCE

If T₁T₂ ,T₃ ,.....Tₙ are the terms of a sequence then some times the terms T₂ - T₁ ,T₃ - T₂ ,..... constitute an AP/GP. nᵗʰ term of the series is determined and the sum to n terms of the sequence can easily be obtained.

** NOTE**
Remember that to find the sum of n terms of a series each term of which is composed of r factors in AP. the first factors of several terms being in the same AP, we  ′write down the nᵗʰ term, affix the next factor at the end , divide by the number of factors thus increased and by the common difference and add a constant. Determine the value of the constant by applying the initial condition ′ .   

Click here
for suggestive questions

https://magnusacademymaths.blogspot.com/2019/04/arithmetic-progression.html?m=1





Saturday, 16 March 2019

MOCK TEST PAPER (1) for 2019

     MOCK TEST PAPER 2019
     JEE (Main and Advanced).

(Complex number, Quadratic Equation, Trigonometry, Co-ordinate geometry-2D).
--------------------------------------------------------
                   Section -1
      (single option correct)
( 3 marks for correct answer
   and -1 for wrong answer)
         *********************

1) value of (1+cosπ/8 +isinπ/8)⁸
                    (1+cosπ/8 -isinπ/8)⁸
    a) 1+i     b) 1-i      c) 1       d) -1

2) If |z+1/z| = 3 then the greatest
     value of |z| is.
a) 3+√3  b) 3+√13 c) √13 -3  d) N

3) Let 3 - i and 2+i affixes of two
     points A and B in Argand plane
     and P represent the complex
     number z=x+iy such that |z-3+i|
     = |z-2-i|. Then the locus of P is
a) a circle on AB as diametre
b) the line AB 
c) the perpendicular bisector of
    AB.  
d) none.

4) The quadratic equation
    x²-6x+a =0 and x²-cx+6=0 has
    one root in common. The other
    roots of the first and second
    equation are integers in the ratio
    4 : 3. Then the common root is
   a) 2     b) 1   c) 4    d) 3

5) If the roots of the equation
     a(b-c)x²+b(c-a)x+c(a-b)=0 are
     equal then a,b ,c are in
a) A P  b) G.P  c) H.P d)none 

6) In a triangle with one angle
     2π/3, the length if the side
    forms an A.P. If the length of the
    greatest side is 7 cm. then the
    radius of the circumcircle of the
    triangle is
a)7√3/3              b) 5√3/3 
c) 2√3/3 .           d) 7√3.

7) The most general solution of
      2ˢⁱⁿˣ +2ᶜᵒˢˣ = 2¹⁻ ¹/√² are
a) nπ -π/4              b) nπ+π/4
c) nπ + (-1)ⁿπ/4    d) 2nπ±7π/4

8) The perpedicular bisector of the
    line segment joining P(1,4)and
    Q(k,3)has y-intercept is -4.
   Then a possible value of k is
    a) -4  .   b) 1     c) 2.     d)  -2

9) Through the point (13,31), a
     straight line is drawn to meet
     the axes of x and y at Q and S
     respectively. If the rectangle
     OQRS is completed then the
     locus R(h,k) is
     a) 13/x +31/y = 1  
     b) 31/x  +13/y =1
     c) 31/x - 13/y =1  
     d) 13/x -31/y =1

10) If the lines ax +ky+10=0,
       bx+(k+1)y+10=0 and
       cx+(k+2)y+10 =0 are
       concurrent. then
     a)a,b,c are in G.P 
     b)a,b,c are H. P
     c)a,b,c are in A.P   d) a+b=c

                  Section -II 
      (Multiple correct option)
   (4marks for correct and -1
     for  incorrect answer)

                  *************
11) If in ∆ABC,
       a⁴ + b⁴+c⁴=2a²(b²+c²),
      then angle A is
  a) 45º b) 60º   c) 90º     d)135º.

12) If (1-tanx)(1+sin2x)=1+tanx,
      then x is equal to
     a) nπ.                  b) (2n+1)π 
     c) nπ-π/4 .         d) 2nπ± π/8

13) The equation
    x² -6x +8+α(x²-4x+3)=0,
    α ∈ R has
a)real and distinct root ∀ α
b) real roots ∀ α ≺ 0
c) real roots ∀ α ≻ 0
d) real and distinct roots for α =0

14) The value of
      ∑⁶ⱼ₌₀(Sin 2jπ/7 - iCos 2jπ/7) =

    a) -i       b) 0      c) i       d) -i⁻³⁷

15) The lines 2x-y+1=0,
      (m-4)x- (2m-1)y=0 and
      4mx+ (m-6)y+1=0 are
a) cocurrent for two values of m.
b) concurrent for one value of m
c) concurrent for no value of m
d) parallel for m=2

                    Section- III 
    (Assertion and Reason Type)
(This section contains 5 questions. Each question contains Statement-1(Assertiin) and Statement-2(Reason). Each question has 4 choices a,b ,c and d out of which ONLY ONE is correct.
In each of the following questions two statements are given as Assertion (A) and Reason(R). Examine the statements carefully and answer the questions according to the instruction given below.
a) if both A and R is correct and R is the proper reason of A.
b) if both A and R is correct and R is not the proper reason of A.
c) if A is correct and R is wrong.
d) if A is wrong and R is correct.

16) Statement-1 )
     Consider the point A(0,1)and
     B(2,0) and P be a point on the
     line 4x+3y+9=0, then the
     coordinates of P such that
    |PA - PB| is maximum
     is (-84/5, 13/5)
Statement-2 ) If A and B are two
    fixed points and P is any point in
    a plane then |PA - PB| ≤ AB.

17) Let z be a moving point in a
       complex plane such that
       amp((z-1)/(z-2)) =π/4.

Statement-1) The locus of z will be
        a circle.
Statement-2) If a point is miving
        such that its distance from the
        fixed point is always constant
        then the locus of the point is a
         circle.

18) Statement -1)
       Incentre of a triangle formed
       by the lines 3x+4y=0,
      5x-12y=0and y-15=0 is the
      point P whose coordinates are
     (1,8).
Statement -2)
      Point P is equidistant from the
      3 lines forming the triangle.

19) Statement-1)
     if a,b,c ∈ R and equations
     ax²+bx+c=0 and x²+ 5x+7=0 has
     a common root then
     (a+c)/b=7/5.
Statement-2) If both roots of
     a₁x²₁+ b₁x + c₁=0 and
     a₂x²+b₂x+c₂=0 are identical,
     then a₁/a₂ =b₁/b₂ = c₁/c₂,
     where a₁, b₁c₁ and a₂, b₂, c₂ ∈ R.

20. Statement -1)
     If ∆ABC is equilateral, then
     tanA + tan B + tan C= 3√3.

Statement -2) In ∆ABC,
tanA + tanB+tanC= tanAtanBtanC.

                     Section IV
          (Integer Answer type)
    4 marks for correct and -1
        for incorrect answer.
                 **************

21) The smallest value of k for
    which both the roots if the
    equation x²-8xk+16(k²-k+1)=0
    are real, distinct and have values
    at least 4 is.

22) Let w=Cos 2π/3 +iSin 2π/3.
     Then the number of distinct
     complex number z satisfying
     Determinant
    z+1       w      w²
      w       z+w²  1    .  = 0 is equal to
      w²      1      z+w

23) Consider a ∆ABC. suppose
      BC=6, CA=10 and area of the
     triangle is 15√3. If angle
      ACB> 90º and r denotes the
      radius of the incircle of the
      triangle, then r² is equal to

24) if z is a complex number
     satisfying |z-3-2i| ≤2, then the
     minimum value of
     |2z -6 +5i| ≤2 is

25) The number if values if x in
      (0, 2π) such that
      1+ sin⁴2x= cos²6x is.

Wednesday, 13 March 2019

BASIC MATHS

            
1)   Number system
2)   Fraction (p/q)
3)   Rational Numbers (Q)
4)   Irrational Numbers (Qᶜ)
5)   Real Numbers (R)
6)   Complex Numbers (C)
7)   Even Numbers
8)   Odd Numbers
9)   Prime Numbers
10) Composite Numbers
11) Co-Prime Numbers/Relatively
       Prime Numbers
12) Twin Prime Numbers
13) Numbers To Remember
14) Divisibility Rules
15) LCM And HCF
16) Factorisation
17) Cyclic Factors
18) Remainder Theorem
19) Factor Theorem
20) Ratio And Proportion
21) Intervals
22) Basic Concepts of Geometry
23) Basic Concepts of
       Mensuration
24) Indices and Surds.

-------+---++++++++---------------+++++--

1).        NUMBER SYSTEM

a) Natural Numbers (N) =
                               (1, 2, 3 ......∞).

b) Whole Numbers (W) =
                        (0, 1, 2, 3,.......∞).

c) Integers (I) =
       (-∞,.....-3, -2, -1,0,1,2,3.....∞).

d) Positive Integers (I⁺) =
                         (1, 2, 3 .....∞).

e) Negative Integers (I⁻) =
                       (-∞, ...-3, -2, -1).

f) Non-negative Integers =
                           (0, 1, 2, 3.......).

g) Non-positive Integers =
                     (-∞, .....-3, -2, -1, 0).

h) Even Integers =
               (...-6, -4, -2, 0, 2, 4,6...).

I) Odd Integers =
                      (-5,-3,-1,1,3,5.....).

****Note
*       Zero is neither positive nor
         negative.
**     Zero is even number.
***   Positive means > 0
**** Non-negative means ≥ 0
                 ------        --------

2) FRACTION (p/q) :::

a) Proper Fraction = 3/5 : Nʳ< Dʳ.

b) Improper Fraction =
                                5/3 : Nʳ > Dʳ.

c) Mixed Fraction : 2+3/5.

d) Compound Fraction: 2/3/5/6.

e) Complex Fraction : 7/3.

f) Continued Fraction: 2+     2.     
                                             2+ 2/+....
  This is usually written in the more
   compact form 2+1/2+. 1/2+ .....

                ---------       ---------

3. RATIONAL NUMBERS (Q)

    All the numbers that can be
    represented in the form of p/q,
    where p and q are integers and
    q ≠ 0, are called rational
    numbers. Integers, Fractions,
    Terminating decimal numbers,
    Non-terminating but repeating
    decimal numbers are all rational
    numbers.
    Q = (p/q: p , q ∈ I and q ≠ 0, ).

** NOTE **

* Integers are rational numbers, but
  converse need not to be true.
** A rational number always exists
   between two distinct rational
   numbers, hence infinite rational
   numbers exists between rational
   numbers.

4) IRRATIONAL NUMBERS (Qᶜ)

   There are real numbers which
   can not be expressed in p/q
   form.
   Non-Terminating non repeating
   decimal numbers are irrational
   number e.g. √2 , √5,√3, ³√10, e ,π.

    e⇔ 2.71 is called Napier′s
    constant and π⇔3.14.

* Note *

* Sum of a rational number and an
   irrational number is an irrational
   number e.g. 2+√3.
** If a ∈ Q and b ∉ Q, then
    ab = rational number, only a=0.
*** Sum, difference , product and
   quotient of two irrational
   numbers need not be an
   irrational number or we can say,
   result may be a rational number
   also.

5) REAL NUMBERS (R)

     The complete set of natural and
      irrational number is the set of
      real numbers, R = Q ∪ Qᶜ.
      The real numbers can be
      represented as a position of a
      point on the real number line.

6) Complex Numbers. (C)

    A number of the form a + ib,
    where a, b ∈ R and i=√-1 is called
    a complex number. Complex
    number is usually denoted by z
    and the set of all complex
    numbers is represented by :
    C=((x+iy) : x, y ∈ R, I =√-1).

      N ⊂ W  ⊂ I ⊂ Q ⊂ R ⊂ C

7) EVEN NUMBERS :

     Numbers divisible by 2, last digit
     0,2,4,6,8 & represented by 2n.

8) ODD NUMBERS :

    Not divisible by 2, last digit
    1,3,5,7,9 represented by (2n ± 1)
a)  even ± even = even.
b)  even ± odd = odd.
c)  odd ± odd = even.
d)  even x any number= even
                                            number.
e)  odd x odd = odd.

9) PRIME NUMBERS :

    Let ' p ' be a natural number, ' p '
    is said to be prime if it has
    exactly two distinct positive
    integral factors, namely 1 and
    itself. e.g 2 ,3, 5, 7, 11, 13, 17, 19,
    23,29,31 .....

10) COMPOSITE NUMBERS :

     A number that has more than
     two divisors .

**Note **

*    ' 1 ' is neither prime nor
      Composite
**  '2' is the only even prime
      number.
*** '4' is the smallest Composite
       number.
****Natural numbers which are not
        prime are Composite numbers
        (except 1).

11) CO-PRIME NUMBER/ RELATIVELY PRIME NUMBERS :

     Two natural numbers ( not
     necessarily prime) are Co-Prime,
     if their H. C. F. is one e.g. (1,2),
     (1,3),(3,4),(5,6) etc.

**Note**

*  Two distinct prime number (s)
     are always Co-Prime but
     converse need not to be true.
** Consecutive natural numbers
     are always Co-Prime numbers.

12) TWIN PRIME NUMBERS :

     If the difference between two
     prime numbers is two, then the
     numbers are twin prime
     numbers. e.g. {3,5 }{5,7},{11,13}
     etc.












Sunday, 10 March 2019

INVERSE TRIGONOMETRY(A- Z) XII

Some Identities:

1) sin⁻¹x + cos⁻¹x= π/2

2) tan⁻¹x+ cot⁻¹x=π/2

3) sec⁻¹x+ cosec⁻¹x =π/2


EXERCISE - A

Write down the following in inverse notation:


1) sinx =3/4.                        x= sin⁻¹(3/4)

2) cosx = 1.                               x= cos⁻¹1 

3) tanx =-4.                             x= tan⁻¹(-4)                                                                            

EXERCISE- B             

Verify each of the following:

Type-1

1) sin sin⁻¹(-1/2) = -1/2            

2) sin cos⁻¹(4/5) = 3/5.

3) sin⁻¹ tan(3π/4) = -π/2      

4) sin cos⁻¹(- √3/2) = 1/2.

5) sin⁻¹(sin 2π/3) = π/3


Type -2

1) cos sin⁻¹(- 1/√2) = 1/√2.

2) cos sin⁻¹(- 12/13) = 5/13.

3) cos⁻¹sin 220= 130°.

4) cos cos⁻¹(1/√2) = 1/√2.

5) cos⁻¹tan(- 5π/4) = π.

6) Cos[π/3 + cos⁻¹(-1/2)]= 1   


 Type-3                                        

1) tan tan⁻¹(- 1) = - 1.

2) tan sin⁻¹0 = 0

3) tan⁻¹ cot(230) = 40°



EXERCISE - C

Find the principal values of: 

Type-1

1) sin⁻¹(1/2).                                        π/6

2) sin⁻¹(√3/2).                                      π/3

3) Sin⁻¹0.                                                  0

4) sin⁻¹(- √3/2).                                    - π/3


Type -2

1) cosec⁻¹(-1).                                      -π/2

2) cosec⁻¹(-√2).                                    -π/4


Type -3

1) cos⁻¹(-√3/2).                                  5π/6

2) cos⁻¹(- 1/2).                                  2π/3   

3) Cos⁻¹(-1)                                               π 

4) cos⁻¹(0).                                           π/2



Type -4

1) sec⁻¹(-√2).                                     3π/4

2) Sec⁻¹(1).                                              0

3) sec⁻¹(2).                                           π/3

4) sec⁻¹(-2).                                         2π/3

Type-5

1) Tan⁻¹(-√3).                                         -π/3

2) Tan⁻¹(0).                                                0


Type-6

1) cot⁻¹(0).                                          π/2

2) cot⁻¹(-1).                                        -π/4

3) Cot⁻¹1.                                              π/4

4) cot⁻¹(√3).                                          π/6



EXERCISE - D

*** Find the general values of:

Type -1

1) sin⁻¹(0).                                            nπ 

2) sin⁻¹(1/√2).                    nπ+ (-1)ⁿ π/4

 

Type-2

1) cosec⁻¹(-2).                           2nπ±2π/3

2) cosec⁻¹(√2).                     nπ+ (-1)ⁿ π/4


Type -3

1) cos⁻¹(√3/2).                           2nπ± π/6


Type -4

1) tan⁻¹(-1).                                    nπ-π/4

2) Tan⁻¹(-√3).                                 nπ - π/3


Type -5

1) sec⁻¹(- 1).                                 (2n+1)π 


Type -6

1) cot⁻¹(-√3).                                nπ - π/6


EXERCISE- E

**Find the value of:

Type -1

1) sin⁻¹(2 sin 150).                              π/2

2) sin{π/2 - sin⁻¹(3/5)}.                      4/5  

3) sin⁻¹tan(3π/4).                                -π/2

4) Sin cos⁻¹(-√3/2).                              1/2

5) sin⁻¹cos(-2π/3).                             -π/6

6) sin(2 tan⁻¹3/4).                             24/25

7) sin(sin⁻¹π/4+ cos⁻¹π/4).                   1   

8) sin(sin⁻¹1/3 + sec⁻¹3) + cos(tan⁻¹1/2 + tan⁻¹2).                                                  1  

9) sin(sin⁻¹1/2 + cos⁻¹1/2).                    1                                

10) If sin⁻¹x=k, then cosec⁻¹{1/√(1- x²)} is. π/2 - k                                 


Type -2

1) 1/2 cos⁻¹(1/2).                                1/2 

2) cos sin⁻¹(-√3/2).                             1/2

3) cos sin⁻¹(3/5).                                  4/5

4) If cos⁻¹(√5)=k, then cosec⁻¹(√5) is.            π/2 - k 


Type-3     

1) sec tan⁻¹(- 5/12).                        13/12

                                                            

Type -4

1) Tan sin⁻¹(1/√2).                               π/4

2) tan⁻¹(1/√2 sec π/4).                       π/4 

3) tan⁻¹(cot 330°).                               -π/3 

4) tan sin⁻¹(√3/2).                                 √3 

5) tan sec⁻¹(-13/12).                          -5/12

6) tan 1/2(tan⁻¹x + cot⁻¹x).                    1    

7) If k= tan⁻¹a, find 

A) sin 2a.                                   2a/(1+ a²)

B) cos 2a.                            (1- a²)/(1+ a²)

C) tan 2a.                                   2a/(1- a²)

8) If 2 tan⁻¹{2x/(1- x²)}=π, then find x.   1                                   


Type -5

1) cosec sec⁻¹(√5).                             √5/2

 

Type -6

1)   cot cos⁻¹(-1/√2).                             -1 

2) cot sin⁻¹(-4/5).                                - 3/4 



Formula Used:

1) sin⁻¹x + sin⁻¹y= sin⁻¹{x √(1- y²)+ y√(1- x²)} 

2) sin⁻¹x - sin⁻¹y= sin⁻¹{x √(1- y²) - y√(1- x²)} 

3) 2 sin⁻¹x = sin⁻¹{2x √(1- x²)} = cos⁻¹(1- 2x²).

4) 3sin⁻¹x = sin⁻¹(3x - 4x³)


EXERCISE -F

*** Prove:

Type -1(a)

1) a) sin⁻¹a = tan⁻¹a/√(1- a²)                   

b) sin⁻¹(1/√5)+ sin⁻¹(2/√5)= π/2 

2) a) sin⁻¹3/5 +sin⁻¹7/25 =π/2.     

b)  sin⁻¹4/5 +sin⁻¹3/5 =π/2.     

3) sin⁻¹(77/85)- sin⁻¹(3/5)= cos⁻¹(15/17)

4) sin⁻¹4/5 + sin⁻¹5/13 + sin⁻¹16/15 =π/2.

5) 2sin⁻¹x = sin⁻¹{2x √(1- x²)} 


Type -1(b)

1) 2sin⁻¹(3/5) + sin⁻¹(7/25) =π/2.   


Type -1(c)

1) 3sin⁻¹x = sin⁻¹(3x - 4x³).



Formula Used:

1) cos⁻¹x + cos⁻¹y= cos⁻¹[xy - √{(1- y²)(1- x²)}] .

2) cos⁻¹x - cos⁻¹y= cos⁻¹[xy + √{(1- y²)(1- x²)}] .

3) 2 cos⁻¹x = cos⁻¹(2x² -1) .

4) 3 cos⁻¹x = cos⁻¹(4x³ - 3x). 

     

Type-2(a)      

** Prove:        

1) cos⁻¹1/√5 + cos⁻¹2/√5 =π/2

2) Cos⁻¹4/5 -Cos⁻¹5/13 = Cos⁻¹56/65.

3) cos⁻¹3/5 + cos⁻¹12/13 + cos⁻¹63/65 = π/2.

 

Type-2(b)

1) 2cos⁻¹x=  cos⁻¹(2x²- 1). 


Type -2(c)

1) 3 cos⁻¹x = cos⁻¹(4x³- 3x).


Formula Used:

1) tan⁻¹x + tan⁻¹y= tan⁻¹{(x+ y)/(1- xy)}

2) tan⁻¹x - tan⁻¹y= tan⁻¹{(x- y)/(1+ xy)}

3) tan⁻¹x + tan⁻¹y + tan⁻¹z = + tan⁻¹{(x+ y + z - xyz)/(1- xy - yz - zx)}.

4) 2tan⁻¹x = tan⁻¹{2x/(1- x²)}

                  = Sin⁻¹{2x/(1+ x²)}

                   = cos⁻¹{(1- x²)/(1+ x²)}

5) 3 tan⁻¹x = tan⁻¹{(3x - x³)/(1- 3x²)}


Type-3(a)

**Prove:

1) tan⁻¹1/2 + tan⁻¹1/3=π/4.

2) tan⁻¹1/4 + tan⁻¹3/5=π/4.

3) tan⁻¹3/5 + tan⁻¹1/4=π/4.

4) tan⁻¹x + tan⁻¹{2x/(1- x²)} =tan⁻¹{(3x - x³)/(1- 3x²)}

5) Tan⁻¹{(2a - b)/b√3} + tan⁻¹{(2b - a)/a√3= π/3. 

6) tan⁻¹1/(p+q)+ tan⁻¹{q/(p²+ pq+1)= tan⁻¹ 1/p.

7) tan⁻¹a+ tan⁻¹c = tan⁻¹ {(a- b)/(1+ ab)} + tan⁻¹{(b - c)/(1+ bc).

8) tan⁻¹1/4 + tan⁻¹1/2=tan⁻¹6/7

9) tan⁻¹4 - tan⁻¹3 = cot⁻¹13.

10) tan⁻¹1/4 + tan⁻¹2/9 =1/2 cos⁻¹3/5.

11) tan⁻¹1/2 + tan⁻¹2/11 = cos⁻¹4/5 

12) tan⁻¹4/3 + tan⁻¹12/5 =π - tan⁻¹56/33.

13) tan⁻¹1/7 + tan⁻¹1/8 + tan⁻¹1/18= tan⁻¹1/8

14) tan⁻¹1/4 + tan⁻¹1/5 + tan⁻¹2/9 + tan⁻¹1/8 = π/4

15) tan⁻¹1/3 + tan⁻¹1/5+ tan⁻¹1/7 + tan⁻¹1/8 = π/4. 

16) tan⁻¹1 + tan⁻¹2 + tan⁻¹3 =π = 2(tan⁻¹1/2 + tan⁻¹1/3 + tan⁻¹1) 

17) tan⁻¹1 + cot⁻¹1/2 + tan⁻¹3 =π = 2(tan⁻¹1 + tan⁻¹1/2 + cot⁻¹3).

18) tan(tan⁻¹x + tan⁻¹y + tan⁻¹z) = cot (cot⁻¹x + cot⁻¹y + cot⁻¹z). 


Type-3(b)

1) 2tan⁻¹2/3 = tan⁻¹12/5.

2) 2tan⁻¹1/3+ tan⁻¹1/7 =π/4

3) 2tan⁻¹1/5 +tan⁻¹1/4=tan⁻¹32/43

4) 2(tan⁻¹1/4 + tan⁻¹2/9) = cos⁻¹3/5 

5) 2tan⁻¹1/4 + tan⁻¹1/5 +tan⁻¹6/61= π/4

 

Type -3(c)

1) 3 tan⁻¹x = tan⁻¹{(3x - x³)/(1- 3x²)}.

2) 3 tan⁻¹1/(2+√3) - tan⁻¹1/2= tan⁻¹1/3

 

Type -3(d)

1) 4tan⁻¹1/5 - tan⁻¹1/239 = π/4

2) 4 tan⁻¹1/5 - tan⁻¹1/70 + tan⁻¹1/99 =π/4.

3) 4(tan⁻¹1 + tan⁻¹1/2 + tan⁻¹1/3) =π.

 

Type-3(e)

1) tan⁻¹1+ tan⁻¹2+ tan⁻¹3 = π= tan⁻¹1/2+ tan⁻¹1/3 +tan⁻¹1

2) tan⁻¹(x -y)/(1+ xy) + tan⁻¹(y - z)/(1+ yz) +tan⁻¹(z - x)/(1+ zx)= 0

3) tan(2tan⁻¹p)= 2 tan(tan⁻¹p +tan⁻¹p³)



** Prove 

Type-4(a)

1) Cot⁻¹1/2 - 1/2Cot⁻¹4/3=π/4 

2) cot⁻¹(1+xy)/(x - y) + cot⁻¹(1+yz)/(y-z) + cot⁻¹(1+zx)/(z - x)= 0

3) cot⁻¹(xy+1)/(x - y) + cot⁻¹(yz +1)/(y-z) + cot⁻¹(zx +1)/(z - x)= 0 


Type -4(b) 

1) 2cot⁻¹5 + cot⁻¹7+ 2 cot⁻¹8 =π/4.




EXERCISE - G

**Prove 

Type -1

1) sin⁻¹1/√17 + cos⁻¹9/√85 = tan⁻¹1/2

2) sin⁻¹1/√5 + Cot⁻¹3 = π/4

3) sin⁻¹1/√10 + cos⁻¹2/√5 = tan⁻¹1.

4) sin⁻¹12/13 + cos⁻¹4/5+ cos⁻¹63/16 =π.

5) sin⁻¹3/5 +Cos⁻¹15/17 = sin⁻¹77/85

6) sin⁻¹4/5 + 2 tan⁻¹1/3 =π/2.

7) sin⁻¹√3/2 + 2 tan⁻¹1/√3 =2π/3.

8) sin⁻¹4/5 + 2tan⁻¹1/3 = π/2.

9)  sin⁻¹(4/5)+ tan⁻¹(3/4)= π/2. 

10) sin(sin⁻¹1/2 - cos⁻¹1/3= (1- 2√6)/6. 

11) Sin⁻¹√{(x -q)/(p - q)} = cos⁻¹{(p - x)/(p - q)} = cot⁻¹√{(p- x)/(x - p)}. 


Type -2

1) cos⁻¹4/5 + cot⁻¹5/3 = tan⁻¹27/11.

2) Cos⁻¹x = 2 sin⁻¹√{(1- x)/2} 

                 = 2 cos⁻¹√{(1+ x)/2} 

                 = 2 tan⁻¹{√(1- x²)/(1+x)}  

3) cos(tan⁻¹15/8 - sin⁻¹7/25)= 297/425 

4) {Cos(sin⁻¹x)}² =  {sin(cos⁻¹x)}²


Type-3(a)

1) tan⁻¹1/4 + cos⁻¹3 /5 =tan⁻¹19/8

2) tan⁻¹x+Cot⁻¹(x+1) = tan⁻¹(x²+x+1)

3) tan⁻¹1/2 + 1/2 cos⁻¹4/5 =π/4

4) tan⁻¹x +Cot⁻¹y=(tan⁻¹{(xy+ 1)/(y - x)}.

5) tan⁻¹√x = 1/2 cos⁻¹{(1- x)/(1+ x)}. 

6) tan(2 sin⁻¹4/5+ cos⁻¹12/13)= -253/204 


Type-3 (b)

1) 2tan⁻¹1/3 +Cot⁻¹7 = π/4

2) 2 tan⁻¹1/5 + cos⁻¹ 63/65 = tan⁻¹3/4.

3) 2tan⁻¹1/5 +cos⁻¹63/65 = tan⁻¹3/4.

4) 2 tan⁻¹√x + 2 tan⁻¹y= sin⁻¹[{2(x+ y)(1- xy)}/{(1+ x²)(1+ y²)}. 



Type-3 (d)

1) 4(tan⁻¹1/3 + cos⁻¹2/√5) =π.

2) 


Type -4

1) 4(cot⁻¹3+ cosec⁻¹√5) =π.

2) cot⁻¹1/2 - 1/2 tan⁻¹4/3 =π/4

3) Cot⁻¹(43/32)- tan⁻¹(1/4)=cos⁻¹(12/13).

4) Cot⁻¹(tan2x)+Cot⁻¹(-tan3x)=x 

5) Cot⁻¹3 +Cosec⁻¹√5 =π/4.






EXERCISE -H 

Prove the Following:

Type -1

*1) sin⁻¹{x/√(1+ x²)} + cos⁻¹{(x+1)/√(x²+ 2x+2)} = tan⁻¹(x²+ x +1)

2) sin(sin⁻¹1/2 + cos⁻¹3/5) = (3+ 4√3)/10.

3) sin⁻¹{2a/(1 + a²)} - cos⁻¹{(1- b²)/(1+ b²)}= 2tan⁻¹{(a -b)/(1+ ab)}

4) sin⁻¹√{(x-b)/(a-b)} = cos⁻¹{(a-x)/(a-b)}= tan⁻¹{(x-b)/(a-x)}.


Type -2

1) cos⁻¹{(cosx + cosy)/(1+ cosx cos y)} = 2 tan⁻¹(tan x/2 tan y/2)

2) Cos⁻¹{(b+ a cosx)/(a+ b cosx)} = 2 tan⁻¹[√{(a- b)/(a+ b)} . tan(x/2)] 

3) cos⁻¹x =2 sin⁻¹√{(1- x)/2}= 2 cos⁻¹√{(1+x)/2}=2 tan⁻¹√{(1- x)/(1+x)}


Type -3

1) tan⁻¹x +cot⁻¹(x+1)=tan⁻¹(x²+ x +1)

2) 1/2 tan⁻¹x= cos⁻¹√[{1+ √(1+x²)}/2√(1+ x²)] 

3) tan(2tan⁻¹a)= 2 tan(tan⁻¹ a + tan⁻¹a³).

4) tan⁻¹{(x - y)/(1+ xy)} + tan⁻¹ {(y - z)/(1+ yz)} + tan⁻¹{(z - x)/(1+ zx)} = 0.

5) tan⁻¹x + tan⁻¹y = sin⁻¹[(x+y)/√{(1+ x²)(1+ y²)}].

6) tan[1/2 sin⁻¹{2x/(1+ x²)}] + 1/2 cos⁻¹{(1- x²)/(1+ x²)} = 2x/(1 - x²).

*7) tan⁻¹(1/√3 tan x/2) = 1/2 cos⁻¹{(1+ 2 cosx)/(2+ cosx)

*8) tan(π/4 + 1/2 cos⁻¹ a/b) + tan⁻¹(π/4 - 1/2 cos⁻¹ a/b)= 2b/a

*9) tan⁻¹√x = 1/2 cos⁻¹{(1- x)/(1+ x)}.

10) tan[2 tan⁻¹{(1+ cosx)/(1- cosx)}] + tan x = 0.

*11) tan⁻¹x = 2 tan⁻¹(cosec tan⁻¹x + tan cot⁻¹x).

*12) 1/2 tan⁻¹x = cos⁻¹[{(1+ √(1+ x²)}/{2√(1+ x²)}]¹⁾² 

13) tan⁻¹[{√(1+ x²)+ √(1- x²)}/{√(1+ x²)- √(1- x²)}]= π/4 + 1/2 cos⁻¹x²

14) tan⁻¹{(√2+1) cotx} - tan⁻¹{(√2-1)cotx= tan⁻¹(sin 2x).

15) tan⁻¹x + tan⁻¹y= sin⁻¹[(x+y)/√{(1+x²)(1+y²)}]

16) tan(sin⁻¹x+ sin⁻¹y) + tan(Cos⁻¹x + Cos⁻¹y) simplify.

17) Tan⁻¹(cotx)+Cot⁻¹(tanx)=π-2x

18) tan⁻¹(1/2 tan 2A) + tan⁻¹(cot A)+ tan⁻¹(cot³A)= 0


Type -4

1) cot(cos⁻¹a + cos⁻¹b) + cot(sin⁻¹a + sin⁻¹b) = 0.

2) cot(cot⁻¹x +cot⁻¹y +cot⁻¹z)=tan (tan⁻¹x + tan⁻¹y + tan⁻¹z)=0.

3) cot⁻¹ x= 1/2 sin⁻¹{2x/(1+ x²)}



EXERCISE - I

Prove the Following:

Type -1

1) sin cosec⁻¹cot tan⁻¹x = x 

2) sin cot⁻¹tan cos⁻¹x = x.

3) sin cot⁻¹tan cos⁻¹x = x.

4) sin cos⁻¹ tan sec⁻¹x = √(2- x²) 

5) sin cot⁻¹cos tan⁻¹x = √{(x²+1)/(x²+2)}

6) sin⁻¹cos sin⁻¹x + cos⁻¹sincos⁻¹x = π/2

7) sin⁻¹√{(x - b)/(a - b)} = cos⁻¹√{(a- x)/(a - b)} = tan⁻¹√{(x - b)/(a - x)}.       

8) 3 sin⁻¹{2x/(1+ x²)} - 4 cos⁻¹{(1- x²)/(1+ x²)} + 2 tan⁻¹ {2x/(1+ x²) = π.                       

Type -2

1) cosec⁻¹cot tan⁻¹x = x


Type -3

1) cos⁻¹cos sin⁻¹x + cos⁻¹ sin cos⁻¹x =π/2.

2) 1/2 cos⁻¹{(5 cosx +3)/(5+ 3 cosx)} = tan⁻¹(1/2 tan x/2).

3) cos⁻¹{(2+ 3 cosx)/(3 + 2 cosx)} = 2 tan⁻¹(1/√5 tan x/2).

4) cos⁻¹{(cosx+ cos y)/(1 + cosx cos y)} = 2 tan⁻¹(tan x/2 tan y/2).


Rype-4

1) sec²(tan⁻¹3) + cosec²(cot⁻¹5) = 36.

2) sec²(tan⁻¹2)+ cosec²(Cot⁻¹3) =15

3) sec²(Cot⁻¹2) + cosec²(tan⁻¹3) = 85/36

4) sec²cot⁻¹(1/√3)+ tan²cosec⁻¹(√2)= 5 

) sec²cot⁻¹(1/2)+ cosec²tan⁻¹(1/3)=15


Type -5

1) tan⁻¹(1/2 tan 2A)+ tan⁻¹(cot A) + tan⁻¹(cot³A) = 0.

2) tan⁻¹(cot x) + cot⁻¹(tanx) = π - 2x.

3) tan⁻¹(cot 2x) + tan⁻¹(- cot 3x) = x.

4) tan(π/4 + 1/2 cos⁻¹2/3) + tan (π/4 - 1/2 cos⁻¹2/3) = 3.

5) tan[2 tan⁻¹√{(1+ cosx)/(1- cosx)} + tan x = 0.

6) tan⁻¹x = 2 tan⁻¹(cosec tan⁻¹x - tan cot⁻¹x).

7) tan(π/4 + 1/2 cos⁻¹a/b) + tan (π/4 - 1/2 cos⁻¹a/b) = 2b/a.

8) tan(π/6 + 1/2 cos⁻¹x) + tan (π/3 - 1/2 cos⁻¹x) = 2/x.

9) tan⁻¹[√{(a - b)/(a+b)} tan x/2] = 1/2 cos⁻¹{a cosx +b)/(a+ b cosx)}.

10) tan(1/√3 + tan x/2) = 1/2 cos⁻¹{(1+ 2cosx)/(2+ cosx-)}.

11) tan⁻¹{(√2 +1) cot x} - tan⁻¹ {(√2 - 1) cot x)= tan⁻¹(sin 2x).

12) 1/2 tan⁻¹x = cos⁻¹√[{1+√(1+ x²)}/2√(1+ x²)] 

13) tan[1/2 sin⁻¹{2x/(1 -x²)} + 1/2 cos⁻¹{(1- y²)/(1+y²)} =  (x+ y)/(1- xy).




EXERCISE - J

SOLVE:


Type-1(a)

1) sin⁻¹x + sin⁻¹(1 - x)= cos⁻¹x.        0, 1/2

2) sin⁻¹ cos sin⁻¹x = π/3.                   ±1/2

3) sin⁻¹x + sin⁻¹2x =π/3.              ±√21/14

4) sin⁻¹5/x + sin⁻¹12/x = π/2.            13

5) sin⁻¹6x + sin⁻¹(6√3 x)= -π/2.        -1/12

6) sin{2 cos⁻¹ cot(2 tan⁻¹x)} = 0.

7) sin⁻¹(√3/2)+ 2 tan⁻¹ 1/√3 = 2π/3.

7) sin⁻¹{2a/(1 +a²)} + sin⁻¹{2b/(1+ b²)} = 2 tan⁻¹x.

9) sin⁻¹{2a/(1 +a²)} - cos⁻¹{(1- b²)/(1+ b²)} = tan⁻¹{2x/(1 - x²)}.               (a- b)/(1+ab)

10) sin⁻¹{x/√(1+ x²)} - sin⁻¹{1/√(1 + x²)}= sin⁻¹{(1+x)/(1+ x²)}.                            2

11) a) sin⁻¹(1/x) = Cos⁻¹√(3)/4

b) sin⁻¹(1/x) = Cos⁻¹√3/x.                 ±2

12) sin⁻¹(6x) + sin⁻¹(6√3x) = - π/2

13) sin⁻¹x + sin⁻¹2x = π/3

14) Sin⁻¹x + sin⁻¹(1 -x) = Cos⁻¹x

15 ) sin⁻¹√(3)x + sin⁻¹x = π/2

16) sin cosec⁻¹cot tan⁻¹x=1.                 1

17) sin⁻¹5/x + sin⁻¹12/x=π/2.             ±13

18) sin⁻¹x - sin⁻¹y =π/3 ; cos⁻¹x + cos⁻¹y = 2π/3.                                         √3/2, 0


Type-1(b)

1) 2sin⁻¹x + sin⁻¹(1 - x)= π/2.         0, 1/2

2) 2sin⁻¹x = cos⁻¹x.                           -1, 1/2


Type -1(c)

1) 3sin⁻¹{2x/(1+x²)} - 4Cos⁻¹{(1-x²)/(1+x²)} + 2 tan⁻¹{2x/(1- x²)} = π/3.           1/√3

2) sin⁻¹x + sin⁻¹y= π; tan⁻¹x + tan⁻¹y=π/2.   1,1                            


Type -2

1) cos⁻¹(x √3)+ cos⁻¹x=π/2.               1/2

2) 1/2 cos⁻¹x= tan⁻¹1/2.                       3/5

3) cos⁻¹x- cos⁻¹π/3 ; sin⁻¹x + sin⁻¹ y= 2π/3.                              1/2, 1


Type -3

1) sec⁻¹x/2 + sec⁻¹x/b = sec⁻¹a + sec⁻¹b.             ab


 Type-4(a)               

1)a) tan⁻¹x + 2 cot⁻¹x = 2π/3.                √3

b) tan⁻¹x = cot⁻¹x.                                   ±1

2) tan⁻¹(2x) + tan⁻¹(3x) = π/4.         -1, 1/6

3) tan⁻¹(2/x) + tan⁻¹(x/4) = tan⁻¹3.     2,4

4) tan(2 tan⁻¹x)= √3.                    1/√3, -√3

5) tancos⁻¹x = sin cot⁻¹1/2.           ±√5/3

6) tan(Cos⁻¹x) = sin (tan⁻¹2)

7) tan⁻¹(cotx) + cot⁻¹(tanx) =π/4.      3π/8

8) tan(cos⁻¹x) = sin(cot⁻¹1/2)

9) tan⁻¹(2+x) + tan⁻¹(2- x) = tan⁻¹ 2/3.     ±3

10) tan⁻¹1/(1 + 2x)+ tan⁻¹1/(1 + 4x)= tan⁻¹ 2/x²

11) tan⁻¹(1 +x)+ cot⁻¹(x -1)= sin⁻¹4/5 + tan⁻¹3/4.

12) tan⁻¹(x - 1) + tan⁻¹x + tan⁻¹(x +1)= tan⁻¹3x.                                     0, ±1/2

13) tan⁻¹{(1 - x)/(1+x)} = 1/2 sin⁻¹{x/√(1+ x²)}.                                  1/√3

14) tan⁻¹(1/2 secx) + cot⁻¹(2 cos x)= π/3.                                                    π/6

15) tan⁻¹(x +1) + tan⁻¹(x - 1)= tan⁻¹6/17.                      1/3

16) tan⁻¹(x -1) + tan⁻¹(x+ 1)= tan⁻¹3x.

17) tan⁻¹x +tan⁻¹2x +tan⁻¹3x = π.    0,±1

18) tan⁻¹{2x/(1 -x²)} = sin⁻¹{2a/1+a²)} + sin⁻¹{2b/(1+b²)}

19) tan⁻¹{2x/(1 -x²)} = sin⁻¹{2a/1+a²)} - cos⁻¹{(1-b²)/(1+b²)}.       (a- b)/(1+ ab)

20) tan⁻¹3x = tan⁻¹x + tan⁻¹(x+1) + tan⁻¹(x-1)

21) tan⁻¹1/4 + 2tan⁻¹1/5+ tan⁻¹1/6 + tan⁻¹1/x = π/4

22) Tan⁻¹(x-1)+Tan⁻¹x+Tan⁻¹(x+1)= tan⁻¹x 


Type-4(b)

1) 2 tan⁻¹(cosx) = tan⁻¹(2 cosecx).   π/4

2) 2 tan⁻¹{2x/(1- x²)} =π/3.             2-√3

3) 2Tan⁻¹(cosx)= Tan⁻¹(2cosecx).

4) 2 tan⁻¹{(1- x)/(1+ x)} =tan⁻¹x.       1/√3


Type -4(c)

1) 3 tan⁻¹{1/(2+ √3)} - tan⁻¹1/x = tan⁻¹1/3.                                                  2


Type -5(a)

1) cot⁻¹x + cot⁻¹(a² - x +1) = cot⁻¹(a - 1).           a, a²- a+ 1


Type -5(b)

1) 2 cot⁻¹{(1+x)/(1- x)} = tan⁻¹x.     ±1/√3




EXERCISE -K 

Type-1

1) If sin⁻¹ x + sin⁻¹y = 2π/3; and cos⁻¹x + cos⁻¹y π/3, then find the value of x and y.

2) If sin⁻¹ x + sin⁻¹y= π and tan⁻¹x + tan⁻¹ y= π/2, then find the value of x and y.

3) If sin⁻¹ x = tan⁻¹y, then show that 1/x² - 1/y² = 1.

4) If sin⁻¹ x + sin⁻¹y + sin⁻¹ z= π, then show that x√(1- x²) + y √(1- y²) + z √(1- z²) = 2xyz.

5) If sin(π cosx) = cos(π sinx), show that x= ± 1/2 sin⁻¹3/4


Type -2

1) If cos⁻¹ x + cos⁻¹y + cos⁻¹ z = π, then prove x²+ y² + z² +2xyz= 1.

2) If cos⁻¹ x/a + cos⁻¹y/b = m, then prove x²/a²- (2xy cos m)/ab +y²/b² = sin²m

3) If cos⁻¹ x + cos⁻¹y = m then show that x² - 2xy cos m + y²= sin² m.

4) If 4 cos 4A + 6 cos 2A - 5= 0, then show that A= 1/2 cos⁻¹ 3/4. 

5) If x+ y = cos⁻¹m and x - y = cos⁻¹n, show that cos²x + cos²y = 1+ mn.


Type -3

1) If sec⁻¹ x = cosec⁻¹y, then show that cos⁻¹ 1/x + cos⁻¹ 1/y = π/2.

2) If sec⁻¹ x = cosec⁻¹y, then show that 1/x² + 1/y² = 1.

3) If sec A - cosec A = 4/3, show that A= 1/2 sin⁻¹ 3/4.


Type -4

1) If x² + y² + z²= r², prove tan⁻¹ yz/xr + tan⁻¹zx/yr + tan⁻¹ xy/zr = π/2.

2) If tan⁻¹ x + tan⁻¹y + tan⁻¹ z = π, then prove x+ y + z = xyz 

3) if xy = 1+ a², show that tan⁻¹ {1/(a+ x)} + tan⁻¹{1/(a+y)= , tan⁻¹ 1/a, (x + y + 2a)≠ 0.

4) If tan⁻¹ x + tan⁻¹y + tan⁻¹z = π/2. Then prove xy + yz + zx = 1.

5) If tan⁻¹ x + tan⁻¹y + tan⁻¹ z = π/2, then prove (y + x)/(1- xy) = 1/z 

6) tan⁻¹(yz/xr) + tan⁻¹(zx/yr) + tan⁻¹(xy/zr) =π/2, when x²+ y²+ z²= r²

7) If m= tan⁻¹{3x/(2a - x)} and n= tan⁻¹{(2x -a)/√3 a show that m - n = π/6.

8) If m=tan⁻¹{1/√(cos 2a)} - tan⁻¹√(cos2a) then show that sec m  = ±1/2 (√sec2a + √cos 2a).


Type -5

1) If cot(sin⁻¹ 13/17) = cos(cot⁻¹x), then show that x = 2/3. 

2) If m= cot⁻¹√cos 2x - tan⁻¹√cos 2x, then show sin m = tan²x



EXERCISE - L

Find the value of:

Type -1

1) sin(2tan⁻¹ 1/3) + cos(tan⁻¹2√2).  14/15


Type -2

1) tan[1/2 sin⁻¹{(2x/(1+ x²)} + 1/2  cos⁻¹(1- y²)/(2+ y²)]; xy≠ 1.    (x+y)/(1- xy)

2) tan(tan⁻¹1/2 + tan⁻¹1/5 + tan⁻¹1/8.    1





Mg. A- R.1  

Prove:

1) 2 tan⁻¹1/3 + tan⁻¹1/7 =π/4.

2) 2 tan⁻¹2 + tan⁻¹3 =π + tan⁻¹1/3

3) 2 cos⁻¹2/√5 + cos⁻¹3/5 = sin⁻¹24/25.

4) 4 tan⁻¹1/5 + tan⁻¹1/239 =π/4.

5) sin(π/2 - sin⁻¹3/5)= 4/5.

6) tan(cos⁻¹3/5 + tan⁻¹2/3) = 18.

7) sec²(tan⁻¹3) + cosec²(cot⁻¹5)= 36.

8) sin⁻¹cos(sin⁻¹x) + cos⁻¹ sin(cos⁻¹x) =π/2.

9) tan[1/2 sin⁻¹{2x/(1 +x²)} + 1/2 cos⁻¹{(1 - y²)/(1+ y²)}] = (x+y)/(1- xy).

10) tan⁻¹1/2 + 1/2 cos⁻¹4/5 =π/4.


Mg. A- R-2 

1) 1) tan⁻¹1 + tan⁻¹2 + tan⁻¹3 =π.

2) cos⁻¹8/17 + cos⁻¹3/5 + cos⁻¹36/85 =π.

3) tan(1/2 cos⁻¹12/13)= 1/5

4) sin[cos⁻¹{(1- x²)/(1+ x²)} + cot⁻¹{2x/(1- x²)} = 1

5) cos⁻¹a -  sin⁻¹b = cos⁻¹[b √(1- a²) + a √(1- b²)].

6) cos(cos⁻¹1/2 + 2 sin⁻¹1/2= 1/2

7) tan{π/4 + 1/2 cos⁻¹(a/b)}+ tan{π/4 - 1/2 cos⁻¹(a/b) =2b/a 

8) tan⁻¹4/3 + tan⁻¹12/5 + tan⁻¹56/33 = π

9) tan⁻¹{x cos k/(1- x sin k)} - cot⁻¹{cos k/(x - sin k)} is independent of x and find it.   

10) tan(tan⁻¹a + tan⁻¹b+ tan⁻¹c)= cot(cot⁻¹a+ cot⁻¹b + cot⁻¹c)


Mg. A- R.3

1) cos tan⁻¹ sin cot⁻¹x = √{(x²+1)/(x² +2)}

2) If sin⁻¹x + sin⁻¹y =π/2, show that 2(x²- xy + y²) = 1+ x⁴ + y⁴.

3) cos⁻¹{(cosx+ cosy)/(1+ cosx cosy) = 2 tan⁻¹(tan x/2 tan y/2)

4) tan⁻¹x= 2 tan⁻¹(cosec tan⁻¹x - tan cot⁻¹x)

5) tan⁻¹(1/2 tan 2A) + tan⁻¹(cot A) + tan⁻¹(cot³A) = 0

6) tan⁻¹p/q - tan⁻¹{(p - q)/(p+ q) =π/4.

7) 8 cosec²(1/2 tan⁻¹2/3) + 27 sec²(1/2 tan⁻¹3/2) =130

8) tan⁻¹x + tan⁻¹y + tan⁻¹{(1- x - y - xy)/(1+ x + y - xy)} =π/4.

9) x= tan⁻¹{(tanx)/4} + tan⁻¹{(3 sin 2x)/(5+ 3 cos 2x).

10) If tan⁻¹y + 4 tan⁻¹x, express y as algebraic function.               y=(4x- 4x³)/(1- 6x²+ x⁴)


Mg. A- R.4


1) If cos⁻¹n= 2 sin⁻¹n then value of n is 

a) 1 b)1/3 c) 1/2 d) 0 e) none

2) value of cos(cos⁻¹x + 2 sin⁻¹x) at x =3/5.                                       

a) 3/5 b) -3/5 c) 5/3 d) -5/3 e) 1

3) If tan⁻¹x + tan⁻¹2x + tan⁻¹3x=π/4. Then x is

a) 0 b) 1 c) 1/2 d) √3 e) 1/√3

4) If cot⁻¹x + sin⁻¹1/√5 =π/4, then x is

a) 0 b) 1 c) 2 c) 3 d) 1/2 e) √3

5) If sec⁻¹x= cosec⁻¹y, then the value cos⁻¹1/x + cos⁻¹1/y is 

a) π b) π/2 c) π/3 d) 2π/3 e) none 

6) if tan⁻¹x{(x -1)/(x-2)} + tan⁻¹{(x+1)/(x+2)} =π/4 then x is

a) 1/√2 b) -1/√2 c) both of a and b d) one of them e) none 

7) If cos⁻¹8/x + cos⁻¹15/x =π/2. Then x is

a) 0 b) 1/2 c) either a or b d) neither a nor b e) both a and b

8) If a+ b= cos⁻¹m and a - b = cos⁻¹n, then show cos²a + cos²b = 1 + mn.

9) If cos⁻¹x + cos⁻¹y + cos⁻¹z =π, then show x²+ y²+ z²+ 2xyz = 1

10) prove: tan⁻¹{(2a - b)/b√3} + tan⁻¹{(2b - a)/a√3)}= π/3.


Mg. A- R.5


1) If K= cos⁻¹x/a + cos⁻¹y/b then show that sin²K= x²/a² - 2xy/ab cos K + y²/b².

2) If K= cot⁻¹√cos2x - tan⁻¹√cos 2x then prove sin K = tan²x

3) If a= tan⁻¹{x√3/(2k - x)} and b= tan⁻¹{(2x - k)/k√3}, then show that one of the values of a - b is π/6.

4) Prove: cos{1/2 cos⁻¹(-1/9)}= 2/3

5) Show that: a cosx + b sin x =√(a²+ b²) cos(x - tan⁻¹b/a)= √(a²+ b²) sin(x + tan⁻¹a/b).

6) Prove: tan⁻¹{(ap - q)/(aq +p)}+ tan⁻¹{b - a)/(ab +1)}+ tan⁻¹{c - b)/(bc+1)}+ tan⁻¹ 1/c = tan⁻¹p/q.

7) Prove: 2 tan⁻¹a + 2 tan⁻¹b= sin⁻¹[{2(a+b)(1- ab)}/{(1+ a²)(1+ b²)}].

8) If tan⁻¹{(x+1)/(x-1)} + tan⁻¹{(x-1)/x}= tan⁻¹(-7), (x≠0,1)

a) 0 b) 1 c) 1/2 d) no solution

9) If tan⁻¹(yz/xr) +tan⁻¹(zx/yr)+ tan⁻¹(xy/zr)=π/2, prove x²+ y²+ z²= r².

10) If K= sin⁻¹(sin x + siny) - sin⁻¹(sinx - sin y), and sin²y + sin²x = 1/2 (y< x), then show that cos K = cos 2y - cos 2x.


Mg. A- R.6 


1) value of tan⁻¹ sin cos⁻¹√(2/3) is 

a) π b) π/2 c) π/3 d) π/6 

2) Principal value of sin⁻¹sin(sin 5π/6)ᶜ 

a) 1/2 b) 1 c) 1/2 radian d) 1 radian

3) Value of cos⁻¹x+ cos⁻¹(-x), when 0 < x < 1

a) π b) π/2 c) 2π d) π/3

4) Value of tan(cos⁻¹4/5 + tan⁻¹2/3).

a) 1 b) 1/2 c) 17 d) 17/6

5) Value of tan {1/2(tan⁻¹x+ tan⁻¹1/x)}.

a) 1 b) 2 c) 3 d) π/2

6) Value of sin{tan⁻¹(tan7π/6)+ cos⁻¹(cos 7π/3)}.

a) 0 b) 2 c) 1 d) 3

7) General value of cos⁻¹[1/2(-1)ⁿ]. 

a) nπ b) nπ± π/2 c) nπ+ 2π d) nπ ±π/3

8) If tan⁻¹1/3 = 18°26', then value of tan⁻¹1/2

a) 26° b) 26°34' c) 34° d) 34°26'

9) If sin⁻¹x+ sin⁻¹y= 2π/3, find the value of cos⁻¹x+ cos⁻¹y.

a) 0 b) 1 c) 1/2 d) none 

10) Prove: tan(1/2 cos⁻¹a)= √{(1- a)/(1+ a)}.


Mg. A- R.7  


1) Prove: cos⁻¹√(3/5)= 1/2 cos⁻¹1/5.

2) Prove: 2 cos⁻¹3/√13 + cot⁻¹16/63 + 1/2 cos⁻¹7/25 =π.

3) If sec⁻¹x/a + sec⁻¹x/b = sec⁻¹a + sec⁻¹b then x is

a) a b) b c) ab d) -a 

4) If sin⁻¹x - cos⁻¹x = sin⁻¹(3x-2), then x is

a) 1 b) 1/2 c) 1,1/2 d) none 

5) If cos⁻¹{(x²-1)/(x²+1)} + tan⁻¹{2x/(x²-1)}= 2π/3 then x is

a) √3, 2 -√3 b) 0,1 c) ±√3 d) 1, √3

6) If sin[2 cos⁻¹cot(2tan⁻¹x)]= 0, then x is

a) ±1 b) 1±√2 c) -1±√2 d) all 

7) If tan⁻¹{(x-1)/(x+1)} + tan⁻¹{(2x-1)/(2x+1)}= tan⁻¹7/6 then x is

a) 0 b) 1 c) 2 d) 3

8) show:cos⁻¹√(2/3) - cos⁻¹{(√6+1)/2√3} =π/6

9) show: 2tan⁻¹[√50 - √18 - 1/√(3-2√2) =π/4

10) tan⁻¹(1/2 tan 2A) + tan⁻¹(cot A)+ tan⁻¹(cot³A)=π, where 0≤ A≤π/4.






























                                    

Monday, 4 March 2019

TRAJECTORIES

                TRAJECTORIES
               -------------*****----------

A curve cuts every member of a given family of curves according to a given law is called a Trajectories of the given family.
The trajectory will be called ORTHOGONAL if each trajectory cuts every member of given family at right angle.

WORKING RULE FOR FINDING ORTHOGONAL TRAJECTORY
-------------------------***----------------------
1) A Form the differential equation
    of family of curves.
2) Write - d x/dy for dy/ dx
    or r² dα/dr for dr/dα if
    differential equation is in the
    polar form.
3) Solve the new differential
    equation to get the equation of
    orthogonal Trajectories.

NOTE ::
A family of curves is self-orthogonal if it is its own orthogonal family.

Question 1)
Find the value of k such that the family of parabola y= cx²+k is the othogonal trajectory of the family of ellipse x²+2y²-y=c.

SOLUTION
-----------⁻⁻⁻⁻⁻⁻⁻
Differentiate both the sides of
  x²+2y²-y=c w.r.t.x we get
  2x+4y dy/dx - dy/dx =0 
or 2x+(4y -1) dy/dx =0 is the differential equation of the given family of curves.
Replacing dy/dx by  - dx/dy to obtain the differential equation of the orthogonal trajectories,
we get   2x+ (1-4y) dx/dy= 0
⇒ dy/dx= (4y-1)/2x
⇒ ∫ dy/(4y-1)  = ∫ dx/2x 
⇒1/4log(4y-1)=1/2log(x)
                                     +1/2log(a),
    where a is any constant.
⇒ log(4y-1)=2log(x)+2log(a)
     or  4y-1=a²x².
or  y=(a²x²)/4   + 1/4,
   is the required orthogonal
   trajectory, which is of the form
   y= cx²+k.
   where c=a²/4, k=1/4.

Do yourself
------------------

1) prove x²(a²+λ) + y²/(b²+λ)  =1
    are self orthogonal family of
    curves.

2) Find the orthogonal trajectories
     of the following families of
     curves.
a) x+2y=C

b) y= C e⁻²ˣ