Saturday, 16 March 2019

MOCK TEST PAPER (1) for 2019

     MOCK TEST PAPER 2019
     JEE (Main and Advanced).

(Complex number, Quadratic Equation, Trigonometry, Co-ordinate geometry-2D).
--------------------------------------------------------
                   Section -1
      (single option correct)
( 3 marks for correct answer
   and -1 for wrong answer)
         *********************

1) value of (1+cosπ/8 +isinπ/8)⁸
                    (1+cosπ/8 -isinπ/8)⁸
    a) 1+i     b) 1-i      c) 1       d) -1

2) If |z+1/z| = 3 then the greatest
     value of |z| is.
a) 3+√3  b) 3+√13 c) √13 -3  d) N

3) Let 3 - i and 2+i affixes of two
     points A and B in Argand plane
     and P represent the complex
     number z=x+iy such that |z-3+i|
     = |z-2-i|. Then the locus of P is
a) a circle on AB as diametre
b) the line AB 
c) the perpendicular bisector of
    AB.  
d) none.

4) The quadratic equation
    x²-6x+a =0 and x²-cx+6=0 has
    one root in common. The other
    roots of the first and second
    equation are integers in the ratio
    4 : 3. Then the common root is
   a) 2     b) 1   c) 4    d) 3

5) If the roots of the equation
     a(b-c)x²+b(c-a)x+c(a-b)=0 are
     equal then a,b ,c are in
a) A P  b) G.P  c) H.P d)none 

6) In a triangle with one angle
     2π/3, the length if the side
    forms an A.P. If the length of the
    greatest side is 7 cm. then the
    radius of the circumcircle of the
    triangle is
a)7√3/3              b) 5√3/3 
c) 2√3/3 .           d) 7√3.

7) The most general solution of
      2ˢⁱⁿˣ +2ᶜᵒˢˣ = 2¹⁻ ¹/√² are
a) nπ -π/4              b) nπ+π/4
c) nπ + (-1)ⁿπ/4    d) 2nπ±7π/4

8) The perpedicular bisector of the
    line segment joining P(1,4)and
    Q(k,3)has y-intercept is -4.
   Then a possible value of k is
    a) -4  .   b) 1     c) 2.     d)  -2

9) Through the point (13,31), a
     straight line is drawn to meet
     the axes of x and y at Q and S
     respectively. If the rectangle
     OQRS is completed then the
     locus R(h,k) is
     a) 13/x +31/y = 1  
     b) 31/x  +13/y =1
     c) 31/x - 13/y =1  
     d) 13/x -31/y =1

10) If the lines ax +ky+10=0,
       bx+(k+1)y+10=0 and
       cx+(k+2)y+10 =0 are
       concurrent. then
     a)a,b,c are in G.P 
     b)a,b,c are H. P
     c)a,b,c are in A.P   d) a+b=c

                  Section -II 
      (Multiple correct option)
   (4marks for correct and -1
     for  incorrect answer)

                  *************
11) If in ∆ABC,
       a⁴ + b⁴+c⁴=2a²(b²+c²),
      then angle A is
  a) 45º b) 60º   c) 90º     d)135º.

12) If (1-tanx)(1+sin2x)=1+tanx,
      then x is equal to
     a) nπ.                  b) (2n+1)π 
     c) nπ-π/4 .         d) 2nπ± π/8

13) The equation
    x² -6x +8+α(x²-4x+3)=0,
    α ∈ R has
a)real and distinct root ∀ α
b) real roots ∀ α ≺ 0
c) real roots ∀ α ≻ 0
d) real and distinct roots for α =0

14) The value of
      ∑⁶ⱼ₌₀(Sin 2jπ/7 - iCos 2jπ/7) =

    a) -i       b) 0      c) i       d) -i⁻³⁷

15) The lines 2x-y+1=0,
      (m-4)x- (2m-1)y=0 and
      4mx+ (m-6)y+1=0 are
a) cocurrent for two values of m.
b) concurrent for one value of m
c) concurrent for no value of m
d) parallel for m=2

                    Section- III 
    (Assertion and Reason Type)
(This section contains 5 questions. Each question contains Statement-1(Assertiin) and Statement-2(Reason). Each question has 4 choices a,b ,c and d out of which ONLY ONE is correct.
In each of the following questions two statements are given as Assertion (A) and Reason(R). Examine the statements carefully and answer the questions according to the instruction given below.
a) if both A and R is correct and R is the proper reason of A.
b) if both A and R is correct and R is not the proper reason of A.
c) if A is correct and R is wrong.
d) if A is wrong and R is correct.

16) Statement-1 )
     Consider the point A(0,1)and
     B(2,0) and P be a point on the
     line 4x+3y+9=0, then the
     coordinates of P such that
    |PA - PB| is maximum
     is (-84/5, 13/5)
Statement-2 ) If A and B are two
    fixed points and P is any point in
    a plane then |PA - PB| ≤ AB.

17) Let z be a moving point in a
       complex plane such that
       amp((z-1)/(z-2)) =π/4.

Statement-1) The locus of z will be
        a circle.
Statement-2) If a point is miving
        such that its distance from the
        fixed point is always constant
        then the locus of the point is a
         circle.

18) Statement -1)
       Incentre of a triangle formed
       by the lines 3x+4y=0,
      5x-12y=0and y-15=0 is the
      point P whose coordinates are
     (1,8).
Statement -2)
      Point P is equidistant from the
      3 lines forming the triangle.

19) Statement-1)
     if a,b,c ∈ R and equations
     ax²+bx+c=0 and x²+ 5x+7=0 has
     a common root then
     (a+c)/b=7/5.
Statement-2) If both roots of
     a₁x²₁+ b₁x + c₁=0 and
     a₂x²+b₂x+c₂=0 are identical,
     then a₁/a₂ =b₁/b₂ = c₁/c₂,
     where a₁, b₁c₁ and a₂, b₂, c₂ ∈ R.

20. Statement -1)
     If ∆ABC is equilateral, then
     tanA + tan B + tan C= 3√3.

Statement -2) In ∆ABC,
tanA + tanB+tanC= tanAtanBtanC.

                     Section IV
          (Integer Answer type)
    4 marks for correct and -1
        for incorrect answer.
                 **************

21) The smallest value of k for
    which both the roots if the
    equation x²-8xk+16(k²-k+1)=0
    are real, distinct and have values
    at least 4 is.

22) Let w=Cos 2π/3 +iSin 2π/3.
     Then the number of distinct
     complex number z satisfying
     Determinant
    z+1       w      w²
      w       z+w²  1    .  = 0 is equal to
      w²      1      z+w

23) Consider a ∆ABC. suppose
      BC=6, CA=10 and area of the
     triangle is 15√3. If angle
      ACB> 90º and r denotes the
      radius of the incircle of the
      triangle, then r² is equal to

24) if z is a complex number
     satisfying |z-3-2i| ≤2, then the
     minimum value of
     |2z -6 +5i| ≤2 is

25) The number if values if x in
      (0, 2π) such that
      1+ sin⁴2x= cos²6x is.

No comments:

Post a Comment