Thursday, 6 August 2020

Rank Correlation for XI

RANK CORRELATION COEFFICIENT

******************************

1) The coefficient of rank correlation of the marks obtained by 10 students in Mathematics and Statistics was found to be 0.5. It was then detected that the difference in ranks in the two subjects for one particular student was wrongly taken to be 3 in place

of 7. What should be the correct rank correlation coefficient.

2) R':  1    2.   3    4   5

    R":  5   4     3    2   1 find R.

3) If sum of squares of difference in two ranks is 33 and Number of variables are 10, Find the value of coefficient of rank correlation.

4) Find rank correlation coefficient

R' :    1    2   3   4    5

R":    1     2  3   4    5

5) If n=10, and ∑D² =280 Find R.

6) If n=10 and ∑D² =30 find R.

7) If rank correlation coefficient is

  0.60 and N=10 find ∑D² where D

  is the difference in ranks of the

  two series.

8) The coefficient of rank correlation between the marks in Statistics and Mathematics obtained by a certain group of students is ⅔ and the sum of the squares of the difference in ranks is 55. How many students are there in the group ?

9) Find rank correlation coefficient

R. N:     1     2   3    4   5   6.  7   8 

Marks': 78 36 97 25 75 82 90 62 

Marks":84 51 91 60 68 62 86 58

10) Find R

Roll no.     Marks in        Marks in

                   English.            Maths

1                   43                     36

2                   29                      6

3                   35                     17 

4                   18                     14 

5                   40                      25

6                   11                      10 

7                   49                      32 

8                  10                        0 

9                    5                         3 

10                 22                      20

11) Find R

Roll no.     Marks in        Marks in

                   English.            Maths

1                   80                     85

2                   38                     50 

3                   95                     92 

4                   30                     58 

5                   74                     70 

6                   84                      65 

7                   91                      88 

8                   60                      56 

9                    66                     52

10                 40                      46

12) find R

X 80   91   99   71   61   81  70   59

Y123135 154 110 105134121 106

13) Find R

X: 75    88   95  70   60   80  81  50 

Y:120 134 150115 110140142100

14) The ranking to individuals at the start and on the finish of a course of training are given below. What is the value of Spearman's coefficient of Correlation?

Roll no: 1  2  3  4  5  6  7  8  9  10

Rank 1: 1  6  3  9  5  2  7 10 8   4

RANK2: 6  8 3  7   2 1  5   9  4 10

15) In a contest, two judges ranked eight candidates in order of their performances, as shown in the table given below. The rank Correlation coefficient is :

Candidates: A  B  C  D  E  F  G  H

JUDGE 1:     5   2   8  1  4  6  3  7

Judge 2:       4  5   7   3  2  8 1  6

16) Find R

R. N: 1    2     3    4    5     6     7     8 

X:      62 53  51  25  79  43   60  33

Y:.     52 63  45  36  72  65   45  25

17) Find the Rank correlation

X: 70  65  71  62  58  69  78  64

X: 91  76  65  83  90  64  55  48

18) Find Rank correlation

Roll no.      Marks in.       Marks in

                   Account.        Statistics

1                     30                   15

2                     20                   40 

3                     40                   40 

4                     50                   45 

5                     30                   20 

6                     20                   30 

7                     30                   15 

8                     50                   50 

9                     10                   20 

10                    0                    10

19) Ten competition in a beauty contest are ranked by three judges in the following order. Use rank Correlation coefficient to determine which pair of judges has the nearest approach to common tastes in beauty.

Judge 1: 1 6 5 10 3  2 4  9   7  8

Judge 2: 3 5 8  4  7 10 2 1   6  9

Judge 3: 6 4 9  8  1   2 3 10 5  7

20) The marks secured by a group of 10 students in Written Selection Test (X) and in the Aptitude Test (Y) are given in the following table. Calculate product-moment Correlation coefficient (r) and rank Correlation coefficient (R). The value of absolute difference between "r" and "R" is :

Test (X).        Test (Y)

  44                  24 

  42                  25 

  40                  28 

  52                  29 

  39                  32 

  32                  35

  24                  36

  46                  41

  41                  45

  50                  50

21) The coefficient of rank Correlation of the marks obtained by 10 students in Mathematics and Statistics was found to be 0.5. it was then detected that the difference in ranks in the two subjects for one particular students was wrongly taken to be 3 in place of 7. What should be the correct rank Correlation coefficient?

21) If the sum of squares of difference in two ranks is 33 and number of variables are 10, find the value of Rank correlation coefficient.

22) If n=10 and ∑D² = 280, then which of the following represents the value of rank Correlation coefficient?

23) For two series we have, ∑D²= 30 and n= 10, find the value of R

24) If R= 0.60 and n= 10. Find the value of ∑D². Where D is the difference in ranks of the two series.

25) The coefficient of rank Correlation between the marks in Statistics and Mathematics obtained by a certain group of students is 2/3 and the sum of the squares of the differences in ranks is 55. How many students are there in the group?


No comments:

Post a Comment