Sunday, 29 November 2020

Binomial Coefficients


1) Prove:

A) ⁿ⁻¹C₁ + ⁿ⁻¹C₂ + ⁿ⁻¹C₃+...+ ⁿ⁻¹Cₙ₋₁ =2ⁿ⁻¹ - 1.

B) ⁿC₀ + ⁿC₂ + ⁿC₄ + ⁿC₈ +... = 2ⁿ⁻¹.

2) If (1+x)ⁿ = C₀ + C₁ₓ + C₂ₓ² + .... + Cₙₓⁿ Show that,

A) C₁+2C₂+3C₃+....+ ₙCₙ= n.2ⁿ⁻¹.

B) C₀ + 3C₁ + 5C₂/3 + ...+
+(2n+1) Cₙ = (n+1) 2ⁿ 

C) C₁- 2C₂+3C₃+...+(-1) ⁿ⁻¹. ₙCₙ=0

D) C₀+4C₁+ 8C₂+12C₃+...+4ₙCₙ = 1+ ₙ. 2ⁿ⁺¹.

E) C₀+2C₁+2²C₂+...+ 2ⁿ .Cₙ = 3ⁿ

F) (C₀ + C₁+C₂+...+Cₙ)²= ²ⁿC₀+ ²ⁿC₁ + ²ⁿC₂ + ...+ ²ⁿC₂ₙ .

3) If (1+x)ⁿ = C₀ + C₁ₓ + C₂ₓ² + .... + Cₙₓⁿ Show that
A) C₀/1 - C₁/2 + C₂/3 -...+(-1) ⁿ.Cₙ/(n+1) = 1/(n+1)

B) C₁/2 + C₃/4 + C₅ +....= (2ⁿ -1)/(n+1)

4) If (1+x)ⁿ= C₀ + C₁ₓ + C₂ₓ² + .... + Cₙₓⁿ Show that,

A) C₀² + C₁² + C₂² + .... + C²ₙ = (2n!)/(n!)².

B) C₀ C₁ + C₁ C₂ + C₂C₃ + ...+ Cₙ₋₁Cₙ = (2n!)/{(n+1)! (n -1)!}

C) C₀ᵣ + C₁Cᵣ₊₁+ C₂ C ᵣ₊₂+...Cₙ₋ᵣCₙ = (2n!)/{(n+r)! (n -r!}

5) (1+x)ⁿ= C₀ + C₁ₓ + C₂ₓ² + .... + Cₙₓⁿ show that,

A) C₁/C₀ + 2 C₂/C₁ +3C₃/C₂ +..... + nCₙ/Cₙ₋₁ = n(n+1)/2

B) (C₀ + C₁)+ (C₁+ C₂) + (C₂+C₃) ... +(Cₙ₋₁+Cₙ)= (n+1)ⁿ/n! C₁C ₂C₃..Cₙ    

6) (1- x)ⁿ= C₀ - C₁ₓ + C₂ₓ² +......+(-1)ⁿxⁿ, show that

C₁ + 2C₂ + 3C₃ +n. Cₙ = n. 2ⁿ⁻¹

7) If n be an integer greater than 1, then show that,
a - ⁿC₁ (a-1) + ⁿC₂ (a-2) -...
(-1)ⁿ (a-n) = 0

8) If (1+x +x²)ⁿ = a₀ + a₁x +a₂x² + .... a₂ₙ x²ⁿ then prove that 
a₀ + a₂ + a₄ + ... a₂ₙ = (1/2) (3ⁿ +1)












Thursday, 26 November 2020

DIFFERENTIAL EQ. (Variable-Separable)

    Equation Of First Order 
                        And
                 First Degree

     -------------------------------------------------

        Separation of variables
                   ***********

If in an equation, it is possible to get all the functions of x and dx in to one side and all the function of y and dy to the other, the variable are said to be separable.

Working rule to solve an equation in which variables are separable.

step 1 )
Let dy/dx =f₁(x) f₂(y) ..(1)
be given equation f₁(x) is a function of x alone and f₂(y) is a function of y alone.

step 2) 
From (1) separating variables, 
[1/f₂(y)] dy = f₁(x) dx ............(2)

step 3)
Integrating both sides of (2), we have ∫[1/f₂(y)] dy=∫f₁(x)dx + c...(3)
where c is constant of integration, is the required solution.

Note 1:
In all solution (3), an arbitrary constant c must be added in any one side only. If c is not added, then the solution obtained will not be a general solution of (1).

Note 2: To simplify the solution (3), the constant of integration can be chosen in any suitable form so as to get the final solution in a form as simple as possible. Accordingly, we are write log c, tan⁻¹ c, sin c, eᶜ, 
(1/2). C , (-1/3). C etc in place of c in some solutions.

Note 3 :
The students are advised to remember by heart the following formulas. These will help them to write solution (3) in compact form

i) log x+ log y= log xy

ii) log x - log y = log(x/y)

iii) n log x = log xⁿ

iv)tan⁻¹x+tan⁻¹y= tan⁻¹[(x+y)/(1-xy)]

v) tan⁻¹x-tan⁻¹y = tan⁻¹[(x-y)/(1+xy)]

vi) eˡᵒᵍ ᶠ⁽ˣ⁾ = f(x).

                     EXAMPLE
                     ---------------

1) dy/dx = eˣ⁻ʸ + x² e⁻ʸ

dy/dx = e⁻ʸ( eˣ +x²) 

or eʸ dy = (x² +eˣ) dx

integrating eʸ = x³/3 + eˣ + c, c is con.

2) √(1+x²+y²+x²y²) + xy (dy/dx) = 0

=√{(1+x²)(1+y²)} + xy(dy/dx) = 0

= √(1+x²)dx /x + ydy/√(1+y²) =0

=(1+x²)dx/x√(1+x²)+ydy/√(1+y²)
                                                  =0

= ∫ dx/x√(1+x²) +∫xdx/√(1+x²)+
                                    ydy/(1+y²) =c

= log x - log{1- √(1+x²)}+ 
                        √(1+x²)+√(1+y²) =c

            

               EXERCISE 
                 *********

1) dy/dx = eˣ⁺ʸ + x² eʸ 

2) (dy/dx)tan y=sin(x + y) + sin(x-y)

3) dy/dx=(sinx+xcosx)/
                               {y(2log y+1)}

4) dy/dx={x(2log x+1)}/
                               (siny +ycosy)

5) log(dy/dx) = ax + by

6) y - x(dy/dx) = a(y² + dy/dx)

7) 3eˣ tan y dx + (1- eˣ)sec² y dy =0

8) ₑx+y dy ₌ ₓ² ₑx³+y dx

9) dy/dx = eˣ ⁺ ʸ when x=1, y=1. find y when x= -1

10) (eˣ + 1)y0 dy = (y +1)eˣ dx

11) (dy/dx) - y tan x = - y sec² x

12) x√(1+y²) dx + y√(1+x²) dy =0

13) (2ax+x²)(dy/dx) = a² + 2ax

14) dr = a (r sinθ dθ - cosθ dr)

15) (eʸ +1) cosx dx + eʸsin x dy = 0

16) √(a+x) (dy/dx) +x = 0

17) dy/dx = √{(1-y²)/(1 -x²)}

18) (x²-yx²)dy + (y²+xy²) dx =0

19) (xy² +x)dx + (yx² +y) dy = 0

20) sec²x tany dx+sec²y tan xdy =0

21) (1+x)y dx + (1+y)x dx = 0

22) (1- x²)(1 - y) dx = xy(1+y)dx

23) x²(y+1)dx + y²(x - 1) dy =0

24) (dy/dx)tan y=sin(x+y)+sin(x - y)

25) y - x dy/dx = 3(1+ x² dy/dx)

26) cosy log(secx +tanx) dx =
       cos xlog(sec y + tan y) dy

27) x dy - y dx = (a² + y²)¹/² dx