1) Prove:
A) ⁿ⁻¹C₁ + ⁿ⁻¹C₂ + ⁿ⁻¹C₃+...+ ⁿ⁻¹Cₙ₋₁ =2ⁿ⁻¹ - 1.
B) ⁿC₀ + ⁿC₂ + ⁿC₄ + ⁿC₈ +... = 2ⁿ⁻¹.
2) If (1+x)ⁿ = C₀ + C₁ₓ + C₂ₓ² + .... + Cₙₓⁿ Show that,
A) C₁+2C₂+3C₃+....+ ₙCₙ= n.2ⁿ⁻¹.
B) C₀ + 3C₁ + 5C₂/3 + ...+
+(2n+1) Cₙ = (n+1) 2ⁿ
C) C₁- 2C₂+3C₃+...+(-1) ⁿ⁻¹. ₙCₙ=0
D) C₀+4C₁+ 8C₂+12C₃+...+4ₙCₙ = 1+ ₙ. 2ⁿ⁺¹.
E) C₀+2C₁+2²C₂+...+ 2ⁿ .Cₙ = 3ⁿ
F) (C₀ + C₁+C₂+...+Cₙ)²= ²ⁿC₀+ ²ⁿC₁ + ²ⁿC₂ + ...+ ²ⁿC₂ₙ .
3) If (1+x)ⁿ = C₀ + C₁ₓ + C₂ₓ² + .... + Cₙₓⁿ Show that
A) C₀/1 - C₁/2 + C₂/3 -...+(-1) ⁿ.Cₙ/(n+1) = 1/(n+1)
B) C₁/2 + C₃/4 + C₅ +....= (2ⁿ -1)/(n+1)
4) If (1+x)ⁿ= C₀ + C₁ₓ + C₂ₓ² + .... + Cₙₓⁿ Show that,
A) C₀² + C₁² + C₂² + .... + C²ₙ = (2n!)/(n!)².
B) C₀ C₁ + C₁ C₂ + C₂C₃ + ...+ Cₙ₋₁Cₙ = (2n!)/{(n+1)! (n -1)!}
C) C₀ᵣ + C₁Cᵣ₊₁+ C₂ C ᵣ₊₂+...Cₙ₋ᵣCₙ = (2n!)/{(n+r)! (n -r!}
5) (1+x)ⁿ= C₀ + C₁ₓ + C₂ₓ² + .... + Cₙₓⁿ show that,
A) C₁/C₀ + 2 C₂/C₁ +3C₃/C₂ +..... + nCₙ/Cₙ₋₁ = n(n+1)/2
B) (C₀ + C₁)+ (C₁+ C₂) + (C₂+C₃) ... +(Cₙ₋₁+Cₙ)= (n+1)ⁿ/n! C₁C ₂C₃..Cₙ
6) (1- x)ⁿ= C₀ - C₁ₓ + C₂ₓ² +......+(-1)ⁿxⁿ, show that
C₁ + 2C₂ + 3C₃ +n. Cₙ = n. 2ⁿ⁻¹
7) If n be an integer greater than 1, then show that,
a - ⁿC₁ (a-1) + ⁿC₂ (a-2) -...
(-1)ⁿ (a-n) = 0
8) If (1+x +x²)ⁿ = a₀ + a₁x +a₂x² + .... a₂ₙ x²ⁿ then prove that
a₀ + a₂ + a₄ + ... a₂ₙ = (1/2) (3ⁿ +1)
No comments:
Post a Comment