Monday, 28 December 2020

LOCUS - XI


                  LOCUS
              *************

1) Find the locus of the point which moves such that its distance from the points (3,1) and (-2,5) are always equal.        10x - 8y + 19= 0

2) Find the locus of a point of which moves so that it is always at a distance 4 from (1,-2).     x²+y²- 2x + 4y - 11= 0

3) Find the locus of a point which moves so that its distance from your (4,0) is always twice its distance from (1,0).           x²+y²= 4

4) A and B are two fixed points whose coordinates are (2,1) and (3,2) respectively. A point P moves in such a way that OA= 2PB always. find the locus of P.      3x² + 3y² - 20x - 14y+47= 0

5) Find the locus of a moving point so that its distance from (0, 4) is two-thirds of its distance from (0,9).                    x²+ y²=36

6) The co-ordinates of two points A and B are (-5,3) and (2,4) respectively. Find the locus of P(x,y) such that PA: PB= 3:2       5x²+5y²-76x-48y+ 44=0.

7) A point moves so that its distance from the point (a,0) exceeds the distances from axis of y by a. find the locus.          y²= 4ax

8) find the locus of a point which moves so that its distance from the y-axis is double its distance from the distance from the point (2,2).                3x²+ 4y²-16x-16y+32= 0

9) find the locus of a point which moves such that its distance from the point (4,0) is √2 times of its its of its its times of its its of its distance from the y axis.      x²- y² + 8x - 16= 0.

10) Find the locus of a point which moves so that its distance from the point (0,5) is two-thirds of its distance from x axis.          9x²+ 5y²- 90y + 225= 0

11) The point A and B are (-4,0) and (-1,0) respectively. A point P moves in such a way that PA:PB = 2:. find the locus of P.                   x²+y²=4

12) Find the locus of a point which moves so that the sum of the squares of its distances from the two points (3,0) (-3,0) is 36.           x²+ y²= 9.

13) Find the locus of a point which moves so that the sum of the squares so that the sum of the squares of its distances from the point (3,0) and (-3,0) is always equal to 50.                   x²+ y²=16

14) Find the locus of a point which moves so that sum of its distances from the points (4,0) and (-4,0) is 10.                         9x²+ 25y²= 225

15) Find the locus of a point which moves such that the difference of its distances from (2,5) and (6,5) is 2.               3x²-y²-24x+10y +20= 0

16) Find the locus of the centre of the circles passing through the the point (c,0) and (-c,0).                x= 0

17) A(2,-3) and B(4,0) are two points. Find the locus of a point P such that the area of the triangle PAB is always 4 units.       3x-2y=4

18) A line segment, 16 units in length, moves so that its ends are always on the positive co-ordinate Axis. Find the equation of the locus of its midpoint.                  x²+y²= 64

19) If the coordinates of two vertices of a triangle be A(-3,0) and B(3,0) and angle ACB is 90, find the locus of centroid of the triangle.       x²+ y² = 1

20) The co-ordinates of a moving point P are ((a sec t, b tan t), where t is a variable parameter. Find the locus of the point P.    x²/a² - y²/b² = 11.

21) The co-ordinates of a moving point P are {{(t-1)/(t+1), (2t+1)/(t+1)}, where t is a variable parameter. Find the locus of the point P.                          x - 2y+3= 0

22) AB is a line of fixed length, 66 units, joining the points A((t,0) and B which lies on positive y-axis. P is a point on AB distant 2 units from A. Express the coordinates of B and of P in terms of t. Find the locus of P as a t varies.                x²+ 4y²= 16

23) Show that the locus of the point of intersection of straight lines. x sin t - y(cos t -1)= a sin t; x sin t - y(cos t -1)= - a siin t is x²+ y²= a².

24) Show that (1,2) lies on the locus x²+y²-4x- 6y +11= 0

25) Does the point (3,0) lie on the curve 3x²+y²- 4x +7= 0.             No

26) Find the condition that the point (h,k) may lie on the curve x²+y²+5x+11y-2= 0.  h² + k²+ 5h + 11k- 2= 0.

27) If the line (2+k)x - (2- k)y +(4k+14)= 0 passes through the point (-1,21), find k.                     5/4

28) Find the ratio in which the line joining the points (6,12) and (4,9) is divided by the curve.         x²+ y²= 4.                       

Saturday, 26 December 2020

TRIGONOMETRICAL IDENTITIES (XI)

A) If A+B+C= π Then Prove:

1) sin 2B + sin 2C - sin 2A =4sin A cosB cos C

2) cos 2A + cos 2B -cos 2C = 1 - 4 sinA sin B cos C

3) sin A + sin B - sin C= 4 sin A/2 sin B/2 sin C/2

4) cos A+ cos B - cos C= 4 cosA/2 cos B/2 sin C/2 - 1

5) (sin B + sin C - sin A)/(sin A + sin B + sin C)= tan B/2 tan C/2

6) (1+ cos A - cos B + cos C)/(1+ cos A+ cos B - cos C)= 1 - 2sinA sin B cos C

7) cos²A + cos²B - cos²C= 1 - 2 sinA sin B cos C

8) cos²2A + cos²2B + cos²2C= 1+ 2 cos 2A cos 2B cos 2C

9) (sin 2A+ sin 2B + sin 2C)/(sin A + sin B + sin C) = 8 sin A/2 sin B/2 sin C/2

10) cos A/(sin B sin C) + cos B/(sin C sin A) + cos C/(sin A sin B) = 2

11) sin(B+C-A)+ sin(C+A-B) + sin(A+B-C)= 4sin A sin B sin C

12) tan 2A + tan 2B + tan 2C= tan 2A tan 2B tan 2C

13) cot B cot C + cot C cot A + cot A cot B = 1

14) cot A/2 + cot B/2 + cot C/2= cot A/2 cot B/2 cot C/2

15) (cot B + cot C)(cot C+ cotA)(cot A + cot B)= cosec A cosec B cosec C

16) sin²A/2 + sin²B/2 + sin²C/2= 1 - 2 sin A/2 sin B/2 sin C/2

B. If A+B+C= π/2, Show that

1) sin²A + sin²B + sin²C + 2 sinA sin B sin C = 1

2) cos(A-B-C)+ cos(B- C-A)+ cos(C-A-B)= 4 cos A cos B cos C

3) (sin 2A + sin 2B + sin 2C)/(sin 2A + sin 2B + sin 2C)= cot A cot B

4) tan B tan C + tan C tan A + tan A tan B = 1

5) cot A + cot B + cot C = cot A cot B cot C

Thursday, 24 December 2020

Revised paper for XII


        Part-A (Marks: 10)
                Group - A

1. Choose the correct alternative [MCQ]. 1x10= 10

I) let Z be the be the set of integers and the mapping f: Z --> Z be defined by, f(x)= x², State which of the following is equal f⁻¹(-4)
A) {2}. B) {- 2}. C) {2,- 2} D) ∅ 

ii) If sec⁻¹x= cosec⁻¹y state which of the following is the value of (cos⁻¹1/x + cos⁻¹1/y) ?
A) π. B) 2π/3. C) 5π/6. D) π/2

iii) The degree of the differential equation d³y/dx³ + x(dy/dx)⁴= 4 log (d⁴y/dx⁴) 
A) 1. B) 3. C) 4. D) undefined 

iv) If f(x) is defined as f(x)= x⁵ +3x +1 and x belongs to R. Then f(x) is..
A) one one and onto
B) oneone but but on to
C) onto but not oneone D) none

v) If d/dx{(1+x²+x⁴)/(1+x+x²)}= ax + b, then the value of a and b are
A) -2 B) 1, -2 C) 2,-1 D) -1,2

vi) If two rows or two columns of a determinant are identical then value of the determinant is ---
A) 0. B) 2. C) -1. D) 1

vii) Angle between the straight lines (x-5)/7= (y+2)/-5= z/1 and x/1= y/2=z/3 is ---
A) π/4. B)π/3. C) π/2. D) π

viii) Integrating factor of the differential equation (x+y+1) dy/dx =1 is
A) eˣ B) e⁻ʸ C) e⁻ˣ D) eʸ

ix) Without expanding prove that
  0        99        98
-99        0         97 = 0
-98      -97         0

x) The slope of the normal to the circle x²+ y²= a² at the point (m,n)
A) m/n. B) -m/n. C) -n/m. D) n/m

         PART -A (Marks : 70)
           ___________________
Part A: 1.a). Any one. 2x1= 2

i) Prove tan⁻¹+ tan⁻¹2+ tan⁻¹= π

ii) f: R--> R and g: R --> R and f(x)= 5|x| - x² and g(x)= 2x-3 then find the value of (gof)(5)

b) any one. 2x1= 2

i) If A = 2x       x And A⁻¹= 1     -1
               0        x                  0     2 then Prove x= 1/2

ii) Prove a+b       a+2b    a+3b
               a+2b     a+3b    a+4b = 0
               a+4b     a+5b    a+6b

c) Any three 2x3= 6

i) f(x)= (sinx/x) +k,      x= 0
                   2 ,               x= 0    
continuous at x=0 , find k

ii) ∫ dx/{x(x²+1)

iii) Solve dy/dx= cos²y/(1+x²) at y(0)1

iv) If y= sin⁻¹x then prove (1-x²)y" - x y'= 0

v) Show that maximum value is less than minimum value of the function y= x²+ 1/x² 

d) Any one. 2x1= 2
i) If a, b, c are the vector as a+b+c= 0, |a|= 3, |b|= 4 and |c|= 5 then prove a.b + b.c+ c.a= -25

ii) Find the value of M for which (x-2)/1 =(y-1)/1 = (z-4)/-M and (x-1)/M = (y-3)/1 = (z-4)/-M are coplanar.

e) Any one. 2x1= 2
i) If for two events A and B, 2P(A)= P(B)= 5/13 and P(A/B)= 2/3, find the value of P(AUB)

ii) If A and B independent event then prove A' and B' also independent.

2a) Answer any one. 4x1= 4
i) If cos⁻¹x+ cos⁻¹y+ cos⁻¹z= π then show x²+ y²+ z²+ 2xyz= 1

ii) f: R --> R as f(x)= x³ +x. Verify the function f is bijective or not.

b) Answer the following. 4x2= 8
i) If A= 4      2     -1
             3      5      7
             1     -2      1 show as the sum of symmetric and skew-symmetric matrix.

ii) Prove with the help of determinants. a²+1       ab       ac
                          ab        b²+1      bc
                          ca         cb        c²+1   = 1 + a² + b² + c². OR
Solve with the help of Cramer's rule 2x - y+ 3z= 4; x - 3y +5z = 3;      x+y+z= 3

c) Answer the following. 4x3=12

i) If (1-x²)y" - xy' = m²y.   

ii) Solve: dy/dx=(x+y)² given (0)=1

iii) ∫ x² dx/(2x⁴ - 7x²-4) OR 

 ∫ x tanx sec ²x dx

d) Answer any one:. 4x1= 4  
i) If M= 2i+j- 3k and N= i-2j+k, find a vector of magnitude if M and N are perpendicular to both.

ii) If Prove [a+b, b+ c, c+a] =2[a.b.c]

e) Answer any one:. 4x1= 4
i) Show that cot⁻¹(1 - x+x²) at (1,0) = π/2 - log 2

ii) ∫ (x sin x)/(1+cos²x) dx at (π,0)

f) Answer any one:. 4x1= 4

i) Bag A contain 22 white and 3 red balls, bag B contain 4 white and 5 red balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from bag A.
ii) A die is rolled 6 times. If getting an odd number is a success, find the probability of getting atleast 3 success.

3a) Answer any one:. 5x1= 5

i) In one kg. Food I contain 6 unit of vitamin A and 7 unit of vitamin B. In one kg. of Food II contain 8 unit of vitamin A and 12 unit vitamin B. Cost of vitamin A and vitamin B are Rs 12, Rs 20 respectively. A man required daily 100 unit of vitamin A and 120 unit of vitamin B. Find minimum cost to get Food I and Food II, with the help of L.P.P.

ii) Solve Graphically with the help of L. P. P , z= 2x+ y; 
x +y ≤2, 
- x + x ≤1; x ≤ z, x≥ 0, y≥0

b) Answer any two: 5x2= 10

i) Solve: xy dy/dx - y²= (x+y)²eʸ⁾ˣ

ii) If the curve xᵐ yⁿ = zᵐ⁺ⁿ touches the straight line x cos a + y sin a = p then prove pᵐ⁺ⁿm ᵐ nⁿ = (m+n)ᵐ⁺ⁿ zᵐ⁺ⁿ sinⁿa cosᵐa.
   
Continue......


--------------____________---------------




Very short question type)

1) ∫ cos x e ˢⁱⁿ ˣ dx at (π/2, 0)

2) ∫ sin x/(3+ 4cos²x) dx

3) Find the solution of dy/dx= 2ʸ⁻ˣ 

4) The differential equation representing the family of curves y= A sin x + B cos x dx

5) ∫dx/{cos²x(1+m²tan²x) at(π/2,0) 

6) Calculate the area under the curve y= 2√(x) included between the lines x=0 and x=1.

7) Solve the differential equation (1+y²)tan⁻¹ x dx +2y(1+x²) dy =0

8) Evaluate ∫(1 - x)√(x) dx

9) ∫(e ⁶ˡᵒᵍ ˣ- e⁵ˡᵒᵍ ˣ)/(e⁴ˡᵒᵍ ˣ-e ³ˡᵒᵍ ˣ)

10) ∫ dx/(sin²x cos²x)

11) The area enclosed by the circle x²+ y₂ =2 

12) dy/dx = y eˣ and x=0, y=e. Find the value of y when x=1

          SHORT ANSWER TYPE:
         
13) Compute the area bounded by the lines x+2y=2, y-x=1 and 2x+y=7.

14) Evaluate ∫ sin (log x) dx

15) Solve the following initial value problem
2x² dy/dx - 2xy +y² =0, y(e)=e

       LONG ANSWER TYPE

16) Solve the following initial value problems.
x- sin y)+(tan y) dy =0, y(0)=0

17) Find the area bounded by the curve y= 2x -x² and the straight line y= - x

18) ∫{2x(1+sin x)/(1+cos²x)} dx

19) ∫ x²/{(x-1)³(x+1) dx

20) ∫(1- cos x)/{cos x(1+ cos x) dx





PROBABILITY For XI

1) A fair die is thrown once. Find the probability that the number on it is:

A) an odd number.                   1/2
B) greater than 4.                     1/3
C) at the most 4.                       2/3
D) between 7 and 10                 0

2) Two fair coins are tossed. Find the probability that
A) head turns up exactly once. 1/2
B) Tail turns up at least once. 3/4
C) Tail does not turn up at all. 1/4

3) A coin is tossed thrice. Find the probability that
A) tail turns up at least twice. 1/2
B) Head does not turn up at all. 1/8
C) tail comes on the second toss. 1/2.
D) Head turns up at least once. 7/8

4) Two fair dice are tossed. Find the probability that
A) The sum of the score is 9.  1/9
B)  the product of the score is 12.1/9
C) the score on the second die is greater than the score on the first die.                                             5/12
C) the Sum of the scores is a prime number.                       5/12
D) the sum of the score is a multiple of 4.                          1/4
E)  the sum of of the scores is a perfect square.                      7/36

5) One card is drawn from a pack of pack of well shuffled pack of cards. Find the probability that the card drawn is :
A) A Queen.                             1/13
B) not a queen.                     12/13
C) a face card.                        3/13
D) red card .                            1/2
E) bears a number lesson than 4. 3/13
F)  king or black black card.           7/13

6) In a match between A and B the probability of winning of A is 0.43. What is the probability of winning of B ?                      0.57

7) A bag contains 3 red, 4 white, 5 blue marbles. All the marbles are identical in shape and and size.  One marble is drawn at random from the bag. find the probability that the marble drawn is.     
A) Red.                                      1/4
B) red or white.                      7/12

8) An unbiased coin is is tossed. Find the probability that
A) A head turns up.               1/2
B) A tail turns up.                   1/2
C) both head and tail turn turn tail turn turn up    0
D) neither head nor tail turns up. 0

9) A Uniform die is thrown. find the the probability of the event A, B and E where
A: score is an even number.    1/2
B: score is a number number less than 5 but less than 2.                        1/2
E: score is a number that is a multiple of 3 or 5.                    1/2.

10) A perfect cubic die is thrown. find the probability that
A) A prime number comes up. 1/2.
B) A perfect square comes up. 1/3

11) Two coins are tossed simultaneously. Find the probability of getting exactly one head.                                           1/2

12) Three coins are tossed simultaneously. Find the probability of getting at least one head.                                     7/8.

13) Three unbiased coins are tossed. find the probability of of getting at least two heads up. 1/2

14) A coin is tossed 3 times. Write the sample space. find the probabilities of
E: getting two or more more heads. 1/2
F: the second is a not a head. 1/2

15) Two unbiased dice are thrown in the air. find the probability that the sum of the scores is a multiple of 3 multiple of 3 a multiple of 3 multiple of the scores is a multiple of 3 multiple of 3 a multiple of 3 multiple of is a multiple of 3 multiple of 3.        1/3

16) two dice are are thrown. What is the probability that the sum of the points obtained is greater than 4 ?                                    5/6

17) Two unbiased dice are thrown. Find the probability that the sum of the numbers on their faces is at most 5 5 5.             5/18

18) two fair dice dice are thrown, find the probability of getting the same score on the first die as on the the second.                             1/6

19) two unbiased dice are thrown in the air. Find the probability that the sum of the scores is greater than 9 or an even number.       5/9

20) if two fair dice are thrown,  find the probability that the sum of the points the points points on their uppermost face is a perfect square or a multiple of 3 3.                         5/12

21) a box contains 5 red, 11 white and 7 black balls. one ball is drawn at random, find the probability that ball drawn is a white white ball.                          11/23

22) a bag contains 6 contains 6 red, 5 blue, 3 white and 4 Black Black balls. A ball is drawn at random. find the probability that the ball is red or black .                                     5/9

23) in a bag there are six six black, 4 white and 3 yellow balls. A ball is taken at random. find the probability of of getting a yellow or a white ball.                         7/13

24) A box contains 7 red, 5 white and 8 green balls identical in all respects except colour. one ball is drawn at random. find the probability that that it is not white.                                3/4

25) a card is drawn from a pack of well shuffled 52 playing cards.  find the probability that the card drawn is.    
A)  a diamond                   1/4
B) A red card.                     1/2
C) A king                             1/13
D) an ace or a Queen.             2/13
E) a face card card                          3/13
F) A card bearing a number between and including 2 and 6. 5/13

26) Six tokens bearing numbers 1 to 6 are placed in one box and seven tokens bearing 1 to 7 are placed in another box. If one token is drawn from each box, what is the probability that the sum of of the number is
A) six                                     5/42
B) 11                                     1/14

27) If P(A)= 0.95, find P(not A).  0.05

28) a bag contains a certain number of a blue blue balls. A ball is drawn, find the probability that the ball drawn is.     
A) black.                                   0
B) blue.                                       1

29) the probability that two boys do not have the same birthday is 0.394. What is the probability that the two boys have the same have the same same birthday ?                          0.606

30) which of the following cannot be the probability of an event
A) 5/7
B) 0.28
C) √2
D) - 2.4                      √2 and - 2.4

31) From a deck of 52 cards, all the face cards are removed and then remaining cards are shuffled. now one card is drawn from the remaining deck. find the probability that the card is. 
A) a black card.                      1/2
B) 8 of red colour.                 1/20
C) A king of black colour.       0

32) a box contains thousand bulbs out of Prit Prit 25 defective, it is not possible to just look at the bulb and tell whether or not it is defective. one bulb is taken out at random from the box. calculate the probability that the bulb taken out is:
A) a good one.                   39/40
B) a defective one.             1/40

33) a bag contains 50 identical cards which are numbered from 1 to 50. If one card is drawn at random from the bag, find the probability that it bears
A) a perfect square number.  7/50
B) a number divisible by 4 divisible by 4.   6/25
C) A number divisible by 5.    1/5
D) A number divisible by 4 or 5. 2/5
E) a number divisible by 4 and 5. 1/25.

34) A bag contains 6 red, 8 white and x blue balls which are  identical in shape and size. the probability that a ball drawn at random is  blue or white is 5/7.  find x.                                       7.

35)  Two fair dice are thrown. Find the probability of getting
A)  the same score on the first die as on the second.        1/6
B) the score of second dice is greater than the score of first. 5/12

36) from a group of 5 men and 3 women A committee of 4 persons persons is to be selected selected be selected selected randomly. find the probability that
A) there is a majority of man. 1/2
B) there is majority of women. 1/14

37) A bag contains 6 white and 9 black balls, if 3 balls are drawn at random, find the probability that all of them are black.         12/65


Continue.....

BASIC PROBABILITY (1)

1) A fair die is thrown once. Find the probability that the number on it is:

A) an odd number.                   1/2
B) greater than 4.                     1/3
C) at the most 4.                       2/3
D) between 7 and 10                 0

2) Two fair coins are tossed. Find the probability that
A) head turns up exactly once. 1/2
B) Tail turns up at least once. 3/4
C) Tail does not turn up at all. 1/4

3) A coin is tossed thrice. Find the probability that
A) tail turns up at least twice. 1/2
B) Head does not turn up at all. 1/8
C) tail comes on the second toss. 1/2.
D) Head turns up at least once. 7/8

4) Two fair dice are tossed. Find the probability that
A) The sum of the score is 9.  1/9
B)  the product of the score is 12. 1/9
C) the score on the second die is greater than the score on the first die.                                             5/12
C) the Sum of the scores is a prime number.                       5/12
D) the sum of the score is a multiple of 4.                          1/4
E)  the sum of of the scores is a perfect square.                      7/36

5) One card is drawn from a pack of well shuffled cards. Find the probability that the card drawn is :
A) A Queen.                             1/13
B) not a queen.                     12/13
C) a face card.                        3/13
D) red card .                            1/2
E) bears a number lesson than 4. 3/13
F)  king or black black card.    7/13

6) In a match between A and B the probability of winning of A is 0.43. What is the probability of winning of B ?                      0.57

7) A bag contains 3 red, 4 white, 5 blue marbles. All the marbles are identical in shape and and size.  One marble is drawn at random from the bag. find the probability that the marble drawn is.     
A) Red.                                      1/4
B) red or white.                      7/12

8) An unbiased coin is is tossed. Find the probability that
A) A head turns up.               1/2
B) A tail turns up.                   1/2
C) both head and tail turn turn tail turn turn up    0
D) neither head nor tail turns up. 0

9) A Uniform die is thrown. find the the probability of the event A, B and E where
A: score is an even number.    1/2
B: score is a number number less than 5 but more than 2.              1/3
C: score is a number that is a multiple of 3 or 5.                    1/2.

10) A perfect cubic die is thrown. find the probability that
A) A prime number comes up. 1/2.
B) A perfect square comes up. 1/3

11) Two coins are tossed simultaneously. Find the probability of getting exactly one head.        1/2

12) Three coins are tossed simultaneously. Find the probability of getting at least one head.      7/8.

13) Three unbiased coins are tossed. find the probability of of getting at least two heads up. 1/2

14) A coin is tossed 3 times. Write the sample space. find the probabilities  of
E: getting two or  more heads. 1/2
F: the second is not a head.      1/2

15) Two unbiased dice are thrown in the air. find the probability that the sum of the scores is a multiple of 3.                                            1/3

16) two dice are are thrown. What is the probability that the sum of the points obtained is greater than 4 ?    5/6

17) Two unbiased dice are thrown. Find the probability that the sum of the numbers on their faces is at most 5                                      5/18

18) two fair dice are thrown, find the probability of getting the same score on the first die as on the second.                                      1/6

19) two unbiased dice are thrown in the air. Find the probability that the sum of the scores is greater than 9 or an even number.                    5/9

20) if two fair dice are thrown,  find the probability that the sum of the points on their uppermost face is a perfect square or a multiple of 3.        5/12

21) a box contains 5 red, 11 white and 7 black balls. one ball is drawn at random, find the probability that ball drawn is a white ball.        11/23

22) a bag contains 6 contains 6 red, 5 blue, 3 white and 4 Black balls. A ball is drawn at random. find the probability that the ball is red or black .                                         5/9

23) In a bag there are six black, 4 white and 3 yellow balls. A ball is taken at random. find the probability of getting a yellow or a white ball.                                7/13

24) A box contains 7 red, 5 white and 8 green balls identical in all respects colour. one ball is drawn at random. find the probability that that it is not white.                        3/4

25) a card is drawn from a pack of well shuffled 52 playing cards.  find the probability that the card drawn is.    
A)  a diamond                            1/4
B) A red card.                             1/2
C) A king                                    1/13
D) an ace or a Queen.                2/13
E) a face card card                     3/13
F) A card bearing a number between and including 2 & 6. 5/13

26) Six tokens bearing numbers 1 to 6 are placed in one box and seven tokens bearing 1 to 7 are placed in another box. If one token is drawn from each box, what is the probability that the sum of the number is
A) six                                         5/42
B) 11                                         1/14

27) If P(A)= 0.95,find P(not A).  0.05

28) a bag contains a certain number of a blue balls. A ball is drawn, find the probability that the ball drawn is.     
A) black.                                         0
B) blue.                                            1

29) the probability that two boys do not have the same birthday is 0.394. What is the probability that the two boys have the same birthday ?                                0.606

30) which of the following cannot be the probability of an event
A) 5/7
B) 0.28
C) √2
D) - 2.4                      √2 and - 2.4

31) From a deck of 52 cards, all the face cards are removed and then remaining cards are shuffled. now one card is drawn from the remaining deck. find the probability that the card is. 
A) a black card.                          1/2
B) 8 of red colour.                     1/20
C) A king of black colour.            0

32) a box contains thousand bulbs out of it 25 defective, it is not possible to just look at the bulb and tell whether or not it is defective. one bulb is taken out at random from the box. calculate the probability that the bulb taken out is:
A) a good one.                       39/40
B) a defective one.                 1/40

33) a bag contains 50 identical cards which are numbered from 1 to 50. If one card is drawn at random from the bag, find the probability that it bears
A) a perfect square number.  7/50
B) a number divisible by 4 divisible by 4.   6/25
C) A number divisible by 5.    1/5
D) A number divisible by 4 or 5.  2/5
E) a number divisible by 4 & 5. 1/25.

34) A bag contains 6 red, 8 white and x blue balls which are  identical in shape and size. the probability that a ball drawn at random is  blue or white is 5/7.  find x.                   7.

35)  Two fair dice are thrown. Find the probability of getting
A)  the same score on the first die as on the second.                      1/6
B) the score of second dice is greater than the score of first.  5/12

36) from a group of 5 men and 3 women A committee of 4 persons persons is to be selected randomly. find the probability that
A) there is a majority of man. 3/7
B) there is majority of women. 1/14

37) A bag contains 6 white and 9 black balls, if 3 balls are drawn at random, find the probability that all of them are black.                12/65

38) A coin is tossed once. Find the probability of getting head

39) A dice is thrown once. What is the probability of getting a prime number.

40)a) A die is thrown once. What is the probability of getting a number other than 4

b) A ‘3’.                                  

c) A ‘4’

c) An odd number

d) A Number greater than 4

41) Three unbiased coins are tossed simultaneously. Find the probability of getting

a) All heads

b) All tails

c) No head.

d) No tail

e) Atleast one head

f) Atleast one tail

g) All not heads

h) Atmost one tail

I) Two or more tails

j) More than two tails

k) Less than one head

l) Heads and tails

m) Heads are the two extremes

n) Heads will come in the 1st row

o) Heads will exceed the number of tails in a particular throw.

p) Exactly 2 heads

q) Atmost two heads.

r) Atleast two heads

42) Two coins are tossed simultaneously. What is the probability

a) All heads

b) All tails

c) No heads

d) No tails

e) All not heads

f) at least one head

g) Exactly one head

h) At Most one head.

i) Atleast two heads

j) Heads will come in first row.

k) Heads and tails will occur alternately.

43) One card is drawn at random from well shuffled pack of cards. What is the probability ofd drawing 

a) A King.

b) A queen

c) An eight

d) A black card

e) The six of the clubs.

f) A spade.

g) A King of red suit

h) A queen of black suit

i) A pack of hearts.

j) A red of face card.

k) A King or a jack

l) A non-Ace

m) A red card

n) Neither king nor a queen

o) Neither a red card nor a queen.

p) It is either a King or a knave

q) It is neither a King nor a Knave

r) It is neither a heart nor a diamond

s) It is neither an Ace, nor a King, nor a Queen, nor a Knave.

t) A spade or an Ace not of a spade.

44) Two dice are rolled simultaneously. What is the probability of getting

a) 8 as the sum of two numbers that turn up

b) A doublet

c) Sum is 7

d) Sum is 11

e) It is either 7 or 11.

f) It is neither 7 nor 11.

g) Sum is odd number more than 3.

h) Sum is a multiple of 4.

i) Sum is a multiple of 3 and 4

j) Sum is multiple of 3 or 4.

k) Sum is atleast 8

l) Sum is Atmost 7

m) The product of the faces is 12.

n) Sum of the faces is more than12

45) There are 35 students in a class of whom 20 are boys and 15 are girls. From these students one is chosen at random. What is the probability that the chosen student is a

a) A Boy

b) A girl.

46) Seventeen cards numbered 1,2,3...16,17 are put in a box and mix thoroughly. One person draw a card from the box. Find probability that the number on the card is

a) A prime

b) Divisible by 3

c) Divisible by 2 and 3 both

d) Not divisible by 2

e) Divisible by 2 but not by 3

f) Divisible by 3 but not by 2

g) Divisible by either 3 or 2

h) Neither Divisible by 2 nor 3

i) multiple of 4

47) A bag contains 6 Red, 8 white balls, 5 green and 3 black balls . One ball is drawn at random from the bag. Find the probability that the ball is:

a) White

b) Red or White

c) Not green

d) Neither white nor black

e) A pink ball

48) From a pack of cards jacks, queens,kings and aces of red colours are removed. From the remaining, a card is drawn random. Find the probability:

a)A black queen

b) A red card

c) A picture card

49) The probability that will rain today is 0.84. what is the probability that will not rain today ?

50) What is the probability that an ordinary year has 53 Sundays

51) Find the probability of getting 53 Friday in a leap year

52) In a lottery there are 10 prizes and 25 blanks . What is the probability of getting a prize ?

53) It is known that a box of 200 electric bulbs contains 16 defective bulbs. One bulb is taken out random from the box. What is the probability that the bulb drawn is

a) Defective

b) not defective.

54) A bag contains 3 green and 8 white balls. If one ball is drawn at random. Find the probability that:

a) It is green

b) It is white

55) There are 17 numbered 1 to 17 in a bag, If a person selects one ball is drawn randomly. Find the probability that the number printed on the ball will be an even number greater than 9.

56) One card is drawn from a pack of cards. Find the probability that

a)Either a spade or a diamond

b) Either a spade or a king.

c) Neither king nor diamond.

d) Either red or queen

57) One counter is drawn at random from a bag contain 70 counters marked with the first 70 numerical. Find the chance that:

a) multiple of 8 or 9

b) either multiple of 3 or 4

58) What is the probability that in a group of 3 people

a) 3 people having same Birthday

b) 2 people have same birthday

c) All have different birthdays

d) atleast one have same birthday

e) Atleast 2 have same birthday

f) Atmost 2 have same birthday.

59) the face cards are removed from a full pack. Out of the remaining 40 cards, 4 are drawn at random.find probability that they belong to different suits?

60) In a throw of two dice, find the probability of getting one prime and one composite number?              ⅓

61) Find the probability that a leap year chosen at random will have 53 Sundays.                                       2/7

62) An integer is chosen at random from the first 100 integers. What is the probability that this number will not be divisible by 5 or 8?         7/10

63) In throwing a fair dice, what is the probability of getting the number' 3'                                      ⅙

64) Find the probability of throwing atleast one ace in a sample throw with two dice.                          11/36

65) From a pack of 52 Cards, two cards are drawn at random. Find the probability that one is a knave and the other a queen.         8/663

66) If a card is picked up at random from a pack of 52 Cards. Find the probability that it is

A) a spade.                                  1/4

B) a king or queen.                  2/13

C) a spade or king or a queen 19/52

67) Three coins are tossed. What is the probability of getting

A) 2 Tails and 1 Head..               3/8

B) 1 tail and 2 heads.                 3/8

C) neither 3 heads nor tails.        3/4

D) three heads.                             1/8

E) atleast one tail.                         ⅞

68) Two fair dice are thrown. Find the probability of getting

A) a number divisible by 2 or 4.  1/2

B) a number divisible by 2 & 4.   1/4

C) a prime no. less than 8.      13/36

69) What is the probability of throwing a number greater than 2 with a fair dice.                           ⅔

70) Two fair coins are tossed. Find the probability of getting

A) 2 heads.                                1/4

B) 1 head and 1 tail.                   1/2

C) 2 tails.                                     1/4

71) In rolling two dices, find the probability that

A) atleast one '6'.                   11/36

B) the sum is 5.                        1/9

72) Two fair dice are thrown. What is the probability of

A) throwing a double.                  1/6

B) the sum is greater than 10.   1/12

C) The sum is less than 10.        ⅚

73) From a pack of 52 Cards, three cards are drawn at random. Find the probability of drawing a king, a queen and Jack.              16/5525

74) A bag contains 20 balls marked 1 to 20. One ball is drawn at random. Find the probability that it is marked with a number multiple of 5 or 7.  

75) Two fair dice are thrown. Given that the sum of the dice is less than or equal to 4, find the probability that only one dice shows two.     ⅓

76) Out of all the 2 digit Integers between 1 to 200, a 2 digit number has to be selected at random. What is the probability that the selected number is not divisible by 7?  77/90

77) Two dice are thrown. If the total on the faces of the two dices are 6, find the probability that there are two odd numbers on the faces.    ⅗


Continue..

Tuesday, 22 December 2020

DIFFERENTIAL EQUATIONS


     Equation Of First Order 
                        And
                First Degree
     -------------------------------------------------
        Separation of variables
                     ***********
If in an equation, it is possible to get all the functions of x and dx in to one side and all the function of y and dy to the other, the variable are said to be separable.

Working rule to solve an equation in which variables are separable.

step 1 ) Let dy/dx =f₁(x) f₂(y) ..(1)
be given equation f₁(x) is a function of x alone and f₂(y) is a function of y alone.

step 2) From (1) separating variables, [1/f₂(y)] dy = f₁(x) dx ..(2)

step 3) Integrating both sides of (2), we have ∫[1/f₂(y)] dy=∫f₁(x)dx + c..(3)
where c is constant of integration, is the required solution.

Note 1: In all solution (3), an arbitrary constant c must be added in any one side only. If c is not added, then the solution obtained will not be a general solution of (1).

Note 2: To simplify the solution (3), the constant of integration can be chosen in any suitable form so as to get the final solution in a form as simple as possible. Accordingly, we are write log c, tan⁻¹ c, sin c, eᶜ, 
(1/2). C , (-1/3). C etc in place of c in some solutions.

Note 3 : The students are advised to remember by heart the following formulas. These will help them to write solution (3) in compact form

i) log x+ log y= log xy
ii) log x - log y = log(x/y)
iii) n log x = log xⁿ
iv) tan⁻¹ x+tan⁻¹y =tan⁻¹[(x+y)/(1-xy)] v) tan⁻¹x - tan⁻¹y = tan⁻¹[(x-y)/(1+xy)]
vi) eˡᵒᵍ ᶠ⁽ˣ⁾ = f(x).

                     Examples 
                 ------------------------
1) dy/dx = eˣ⁻ʸ + x² e⁻ʸ
dy/dx = e⁻ʸ( eˣ +x²) 
or eʸ = (x² +eˣ) dx
integrating e = x³/3 +eˣ + c, c is con.

2) √(1+x²+y²+x²y²) + xy (dy/dx) = 0
√{(1+x²)(1+y²)} + xy(dy/dx) = 0
√(1+x²)dx /x + ydy/√(1+y²) =0
(1+x²) dx/x√(1+x²) + ydy/√(1+y²) =0
∫ dx/x√(1+x²) +∫xdx/√(1+x²)+
                                  ydy/(1+y²) =c
log x - log{1- √(1+x²)}+ 
                      √(1+x²)+√(1+y²) =c
            
                      EXERCISE 
1) dy/dx = eˣ⁺ʸ + x² eʸ 
2) (dy/dx) tan y = sin(x + y) + sin(x-y)
3) dy/dx=(sinx+xcosx)/{y(2log y+1)}
4) dy/dx={x(2log x+1)}/(siny +ycosy)
5) log(dy/dx) = ax + by
6) y - x(dy/dx) = a(y² + dy/dx)
7) 3eˣ tan y dx + (1- eˣ)sec² y dy =0
8) dy/dx = ₑˣ⁺ʸ + ₓ² ₑx³+y
9) dy/dx = eˣ ⁺ ʸ when x=1, y=1. find y when x= -1
10) (eˣ + 1) dy = (y +1)eˣ dx
11) (dy/dx) - y tan x = - y sec² x
12) x√(1+y²) dx + y√(1+x²) dy =0
13) (2ax+x²)(dy/dx) = a² + 2ax
14) dr = a (r sinθ dθ - cosθ dr)
15) (eʸ +1) cosx dx + eʸsin x dy = 0
16) √(a+x) (dy/dx) +x = 0
17) dy/dx = √{(1-y²)/(1 -x²)}
18) (x²-yx²)dy + (y²+xy²) dx =0
19) (xy² +x)dx + (yx² +y) dy = 0
20) sec²x tany dx+ sec²y tan x dy =0
21) (1+x)y dx + (1+y)x dx = 0
22) (1- x²)(1 - y) dx = xy(1+y)dx
23) x²(y+1)dx + y²(x - 1) dy =0
24) (dy/dx) tan y= sin(x+y)+sin(x - y)
25) y - x dy/dx = 3(1+ x² dy/dx)
26) cosy log(secx +tanx) dx =
    cos xlog(sec y + tan y) dy
27) x dy - y dx = (a² + y²)¹/² dx

28) Find the curves passing through (0,1) and satisfying sin(dy/dx)
29) Find the function f which satisfies the equation df/dx = 2f, given that f(0) = e³

------------------********--------------------


    VARIABLE UNSEPARABLE
     ---------------( )( )---------------

Transformation of some equations in the form in which variables are separable Equations of the form
dy/dx = f(ax+ by+ c). OR
dy/dx = f(ax + by)
can be reduced to an Equation in which variables can be separated. 
For this purpose, we use the substitution ax +by+c OR ax + by=v

EXAMPLE (1)

dy/dx = (4x + y +1)²
Let 4x + y +1 = v. ........(1)
Differentiating (1) with respect to x, we get 4 + (dy/dx)= dv/dx OR
dy/dx=(dv/dx) - 4 ........(2)
Using (1) and (2), the equation becomes
(dv/dx) - 4 = v² OR dv/dx = 4 + v²
Now , separating variables x and v,
So dx =dv/(4+v²)
Integrating, x + c ' = (1/2).Tan⁻¹(v/2), where c ' is an arbitrary constant.
Or, 2x + c = Tan⁻¹(v/2)
Or, v= 2 tan(2x +c), Where c = 2c '
Or, 4x + y + 1=2 tan(2x +c), using (1)

EXAMPLE (2)

(x+y)² (dy/dx) = a².
Let x+y = v ......(1)
Differentiating 1+(dy/dx) 
OR dy/dx= dv/dx - 1 .......(2)
Using (1) and (2) the given Equation becomes v²(dv/dx -1)= a² OR
v² = dv/dx = a²+v²
OR dx = v²/(v²+a²) or 
dx = [1- a²/(a²+v²)]
Integrating, 
x+c = v - a² (1/a) Tan⁻¹(v/a), where c is an arbitrary constant.
Or x + c = x+y - Tan⁻¹{(x+y)/2}
Or y - a Tan⁻¹{(x+y)/a}= c

EXERCISE
*************

1) dy/dx=sec(x+y) or cos(x+y)dy=dx
2) dy/dx= sin(x+y) + cos(x +y)
3) (x+y)(dx - dy) = dx+ dy
4) dy/dx = (4x +6y +5)/(3y +2x +4)
5) (x+2y -1)dx = (x + 2y +1) dy
6) dy/dx= (x +y)²
7) dy/dx +1 = eˣ⁺ʸ
8) (2x +y +1) dx + (4x +2y -1) dy =0
9) (x - y - 2)dx - (2x - 2y -3) dy =0
10) (x +y +1) (dy/dx) = 1
11) sin⁻¹(dy/dx) = x +y
12) (2x + 4y +3)(dy/dx) = 2y +x + 1
13) (4x+6y+5)/(3y+2x+4) (dy/dx)=1
14) dy/dx= (x-y+3)/(2x - 2y +5)
15) (2x +2y +3)dy - (x+y+1) dx =0
16) (x -y)² (dy/dx) = a²
17) (x+y-a)/(x+y-b)(dy/dx)=
      (x+y+a)/(x+y+b)
18) dy/dx = cos (x+y)
19) dy/dx= eˣ⁺ʸ given x=1, y=1, prove y(-1)= -1
20) dy/dx= (x+y+1)/(x+y-1) 
    when y= 1/3, at x= 2/3
21) (x+y-1)dy = (x+y) dx
22) dy/dx = (x-y+3)/(2x-2y+5)


      HOMOGENEOUS EQUATION 

Definition)

A differential equation of first order and first degree is said to be homogeneous if it can be put in the form dy/dx = f(y/x)

Working Rule)
Let the given equation be homogeneous. then , by definitiin, the given equation can be put in the form dy/dx =f(y/x) .......(1)
To solve(1), let y/x= v i.e., y=vx ..(2)
Differentiating w.r.t.x, (2)
                     dy/dx= v+x(dv/dx ...(3)
Using (2) and (3), (1) becomes
v+ x dv/dx = f(v) or x dv/dx=f(v) -v
separating the variables x and v, we have dx/x =ln(dv/{f(v) -v} so that 
log x + c = dv/{f(v) -v} where c is an arbitrary constant. after integratiin, replace v by y/x.

Examples.
1) (x³+3xy²)dx+(y³+3x²y)dy =0
given dy/dx = -(x³+3xy²)/(y³+3x²y)
 dy/dx = {1+3(y/x)²}/{(y/x)³+3(y/x)} 
take y/x =v, i.e., y=vx
so that dy/dx = v+ x (dv/dx) 
so v+ x dv/dx = -(1+3v²)/(v³+3v)
or x dv/dx = -(1+3v²)/(v³ +3v) - v
                  = -(v⁴ +6v² +1)/(v³ +3v)
or 4dx/x=-(4v³ +12v)/(v⁴ + 6v² +1)dv
integrating 4 log x= - log(v⁴+6v²+1)+ log c , c being arbitrary constant.
or lig x⁴ = log[c/(v⁴+6v² +1)], i.e.,   
                               x⁴(v⁴+6v²+1)=c
or y⁴ +6x²y²+x⁴ +c
or (x²+y²)² +4x²y² =c as y/x =v


                   EXERCISE
                    ----------------
1) (x² +y²)dx - 2xy dy =0
2) y² +x² (dy/dx) = xy(dy/dx)
3) (x² +xy)dy = (x²+ y²) dx
4) dy/dx = y/x + sin(y/x)
5) (x² +y²) (dy/dx) = xy
6) (x² -y²) dy = 2xy dx
7) (x³ - y³)dx + xy² dy =0
8) y² dx + (xy +x²) dy =0
9) x(dy/dx) + (y²/x)= y
10) x²y dx - (x³+ y³) dy = 0
11) (x +y) dy + (x - y ) dx = 0 or
         y - x((dy/dx) = x + y(dy/dx) 
12) x(x - y)dy + y² dx =0
13) x(x - y) dy = y(x + y)dx
14) x sin (y/x) (dy/dx) = ysin (y/x) - x
15) x² dy + y(x+ y)dx =0
16) (x³ - 3xy²)dx = (y³ - 3x²y) dy
17) 2 (dy/dx) = [y(x + y)/x²] or
       2(dy/dx) - (y/x) = y²/x²
18) (x³ - 2y³) dx + 3xy² dy =0
19) dy/dx = (xy² - x²y)/x³
20) (x² + y²) dx +2xy dy = 0



EQUATION REDUCIBLE TO HOMOGENEOUS FORM.
---------------------------------------------
Equ. dy/dx=(ax+by+c)/(a′x+by +c)
              where a/a′ ≠ b/b′ .........(1)
can be reduced to homogenous as
Take x= X + h and y =Y+k ...(2)
where X and Y are new variables and h and k are constants to be chosen that the resulting Equation in terms of X and Y may become homogeneous.
From (2), dx=d X and dy= dY 
so that dy/DX = dY/dX. ...(3)
Using (2) and (3), (1) becomes
dY/dX= {a(X+h)+b(Y+k)+c}
             {a′(X +h)b′(Y+k)+c′}
         = {aX +bY +(ah+bk+c)}
            {a′X +b′Y +(a′h+b'k+c)} .....(4)
In order to make (4) homogeneous, chose h and k so as to satisfy the following two Equation ah + bk+c=0 and a'h +b'k+c' =0. ...............(5)
Solving (5), h= (bc' -b'c)/(ab' - a'b) and k= (ca' - c'a)/(ab' - a'b) .......(6)
Given that a/a' ≠ b/b'. Therefore, 
(ab' - a'b) ≠ 0. Hence, h and k given by (6) are meaningful, i.e., h and k will exist. Now, h and k are shown. So from (2), we get
X= x - h. And Y= y - k. .....(7)
In view of (5), (4) reduces to
dY/dX = (aX +bY)/(a'X + b'Y)
           = {a+b(Y/X)}/{a'+b'(Y/X)
Which is surely homogeneous Equation in X and Y and can be solved by putting Y/X =v as usual. After getting solution in terms of X and Y, we remove X and Y by using (7) and obtain solution in terms of the original variables x and y.

EXAMPLE
dY/dx = (x+2y -3)/(2x +y -3)
Let x= X+h, and y=Y+k
So dy/dx= dY/dX. ................(1)
So Equation becomes
dY/dX={X+2Y+(h+2k-3)}/
           {2X +Y+(2h+k - 3)} ........(2)
Choose h,k so that
h+2k-3=0, and 2h+k - 3=0 ......(3)
Solving (3) we get h=1, k=1 so in(1) we have X=x - 1, and Y = y - 1.....(4)
Using (3) in (2), we get
dY/dX= (X+2Y)/(2X+Y)
          = {1+(2Y/X)}/{2+(Y/X)} ...(5)
Take Y/X=v, i.e., Y=vx
                   dY/dX= v+X(d v/dX)...(6)
From (5) and (6), we have
v+X d v/dX=(1+2v)/(2+v)
Or X dv/dX = (1+2v)/(2+v) - v
                    = (1- v²)/(2+v)
Or dX/X ={(2+v)dv}/{(1 -v)(1+v)}
=[1/2 {1/(1+v)} +3/2{1/(1-v)}] dv,
Integrating
 logX+logc=(1/2)[log(1+v)- 3log(1-v)]
Or 2 log (cX)= log(1+v)/(1-v)³
Or X²c² = (1+v)/(1 - v)³
Or X²c²(1-Y/X)³=1+ Y/X, as v= Y/X
Or c²(X-Y)³= X+Y
or
c²{x-1-(y-1)}²= x-1+y-1,. ...by (4)
Or c'(x-y)²= x+y-2, taking c'= c².c' being an arbitrary constant.

                   EXERCISE
                 *************
1) dy/dx + (x-y-2)/(x-2y-3)=0
2) dy/dx= (x+y+4)/(x-y-6)
3) dy/dx= (x-2y+5)/(2x+y-1)
4) dy/dx= (x+y-2)/(y-x-4)
5) (2x²+3y²-7)x dx-(3x²+2y²-8)y dy=0
6) dy/dx= (x+2y+3)/(2x+3y+4)
7) dy/dx= (y-x-1)/(y+x+5)
8) dy/dx=(2x +2y -2)/(3x+y-5)
9) dy/dx= (2x-y+1)/(x+2y-3)
10) (x+2y-2)dx +(2x-y+3) dy=0
11) (2x+3y-5)(dy/dx +(3x+2y-5) =0
12) (x -y)dy = (x+y+1)dx
13) (6x+2y-10)(dy/dx) -2x -9y +20=0
14) (6x -2y -7) dx = (2x +3y -6) dy
15) (3y -7x +7) dx + (7y -3x +3) dy=0
16) (x-y-1)dx + (4y+x-1)dy =0
17) (2x +3y +4) dy = (x+2y +3) dx.










DIFFERENTIAL EQUATIONS

1) Form the differential equation
a)of all straight lines passing through the origin.
b) of the curve represented by 2x²-2xy+x²=a². a is arbitrary.
2) y=a e²ˣ+be⁻³ˣ+ceˣ where a,b,c are arbitrary constant.
3) y= A sin x+ B cos x + x sin x.

         VARIABLE SEPARABLE

1) y dx - x dy = xy dx
2) (1-x)dy - (3+y)dx=0
3) (eˣ+1) cos x dx + eʸ sin x dy=0
4) dy/dx= eˣ⁻ʸ+x²e²⁻ʸ
5) x cos²y dx= y cos²x dy
6) dy/dx= (xy+y)/(xy+x)
7) {√(1+x²)√(1+y²)} dx+ xydy=0
8)xy(dy/dx)=(1+y²)(1+x+x²)/(1+x²)
9) y-x(dy/dx) =(y² + dy/dx)
10) x√(1+y²)dx + √(1+x²)dy=0
11) x√(1+y²)dx+y(1+x²)dy=0
12) dy/dx= xy+x+y+1
13) a(x dy/dx + 2y)= xy dy/dx
14) e ˣ⁻ʸdx +e ʸ⁻ˣ =0
15) (eʸ⁻¹) cosx dx +eʸ sin x dx=0
16)3eˣ tany dx +(1-eˣ) sec²y dy=0
17) x cos²y dx = y cis² x dy
18)sec²x tany dy+ sec²y tanx dx=0
19) dy/dx tany= sin(x+y)+ sin(x-y)
20) dy/dx= sin(x+y)+ cos(x+y)
21) dy/dx - x tan (y-x) =1
22) dy/dx=
{x(2logx +1)}/(siny + ycosy)
23) (x²-yx²)dy/dx + y² + xy²=0
24) √(1+x²+y²+x²y²)+ xy dy/dx=0
25) (x-y)² dy/dx = a²
26) sin⁻¹(dy/dx)= x+y
27) (x dx +y dy)/(x dy - y dx) = √{a²-x²-y²)/x²+y²)}
28){(x+y-a)/(x+y-b)} dy/dx = {(x+y+a)/(x+y+b)}
29) y dx= - (2+x²) tan⁻¹x dy =0

Linear Differential Equation

1) x²(dy/dx)+y = -1
2) x(dy/dx) + 2y - x² log x =0
3) cos x (dy/dx) + y = sin x
4) (x+y+1)dy/dx = 1
5) (1+x²)dy/dx + 2xy - 4x² =0
6) dy/dx + y tan x = x² cos² x
7) (x+2y³) dy/dx = y
8) x(x-1)(dy/dx) - y = x²(x-1)²
9) (1+x²)dy/dx + y = eᵗᵃⁿ⁻¹ˣ
10) (1+y²)+ (x - eᵗᵃⁿ⁻¹ʸ) dy/dx=0
11) dy/dx + y sin x = sec² x
12) cos² x (dy/dx) + y = tan x
13) sin 2x (dy/dx) - y = tan x 
14) sin x (dy/dx) = cos x
15) (1+x) dy/dx - xy = 1- x
16) x[dy/dx + y] = 1- y
17) √(a²+ x²) dy/dx +y =√(a²+ x²)-x
18) xsinx(dy/dx)+(xcosx+sinx)y=sinx.
19) dy/dx - tan/(1+x) =(1+x)eˣsecy
20) x(1-x²)dy+(2x²y-y-ax³)dx=0
21) (1+x²)dy/dx + 2xy = 4x²















  



Thursday, 17 December 2020

BANKING(A - Z)

Exercise-A

1) John has a recurring deposit account of Rs. 1000 per month in a bank. What will he get after 12 months if the rate of interest is 9% p.a. ?                              Rs.12585

2) Vishal has opened a recurring deposit account of Rs800 per month for 30 months in a bank. Find the amount he will get at the time of maturity, if the rate of interest is 9% p.a.               Rs2679

3) Ashwani has a cumulative- time deposit account of Rs600 per month for a period of 20 months. What will Ashwani get at the time of maturity, if the rate of interest is 10% p.a. ?    13050                      

4) Akshaya deposits Rs 350 per month in a recurring account for20 months, at the rate of 11 p.a. Find the amount, He will get after 20 months.      ₹7673.75

5) Miss Anshu Pandey deposited ₹350 per month for 20 months under recurring deposit scheme. Find the total amount payable by the bank on maturity of the account if the rate of interest is 11% per annum.        ₹7673.75

6) Mrs. Mathew opened a recurring deposit account in a bank with ₹500 per month for 2 and half years. Find the amount she will get on maturity if the interest is paid on monthly balance at 12.5% per annum.                             ₹17421.87

7) Calculate the amount received on maturity of recurring deposit of ₹150 per month for 1 year 6 months, if the rate of interest is 11% per annum.               ₹2935.13

8) Amar deposits ₹1600 per month in a recurring deposit for 3 years at the rate of 9% p.a. simple intrest. Find the amount Amar will get at the time of maturity.            ₹65592

9) Amit deposited ₹150 per month in a bank for 8 months under the recurring deposit scheme. What will be the maturity value of his deposits, if the rate of interest is 8% p.a. and interest calculated the end of every month ?    ₹1236




Exercise-2

1) Ashish has a cumilative time deposit account in a bank.  He deposits Rs600 per month for a period of 6 years. If at the end of maturity he gates Rs53712, find the rate of interest.                          8%

2) Harsha has a 4 years recurring deposit account of Rs500 per month. If she gets Rs 4900 as the interest at the time of maturity, find the rate of interest.                     10%

3) Shilpa gets Rs75250 at the end of 5 years at the rate of 10% p.a in a recurring deposit account, find the monthly installment.           Rs 1000

4) Dishita has a recurring deposit account in a bank for 6 years at 10% p.a. She gets Rs 17520 as the interest on maturity . Find the monthly installment.              Rs800

Exercise-3

1) Yash deposited a certain sum of money, every month, for 5/2 years in a cumulative time deposit account. At the time of maturity he collected ₹4965. If the rate of interest was 8% p a. Find the monthly deposit.                     ₹150


Exercise-4

1) A Recurring deposit account of ₹1200 per month has a maturity value of ₹ 12440. If the rate of interest is 8% and the intrest is calculated at the end of every month. Find the time of the recurring deposit.          10 months

2) Meena has a cumulative time deposit account of ₹340 per month at 6% per month. If she gets ₹ 7157 at the time of maturity, find the total time for which the account was held.                               20 months

3) On depositing ₹200, every month in a cumulative time deposit account, paying 9% p.a. intrest, a person collected ₹2517 at maturity. Find the period.               12 months



Saturday, 12 December 2020

DIFFERENTIATION (J)

DIFFERENTIATION


A) Short answer type:

1)
a) If y= cos²x - sin²x, 
find y" at x= 0.                             -4

b) If f(x)= 3sinx - 4sin³x find the value of f"(π/2).                             9

c) If y²= mx², prove y"= 0

d) If f(x)= x²eˣ then find f"(0).   2

e) If x= a cos 2t and y= bsin²t, find the value of d²y/dx².                    0

f) If y²= 4ax  then Prove that
d²y/dx² . d²x/dy² = - 2a/y³

g) If pvᵏ = constant, prove that, 
v² d²p/dv² = k(k+1)p

h) sin⁻¹{2x/(1+x²)} w.r.t.tan⁻¹x.      2

I) If xʸ yˣ= c, c being constant, find dy/dx at x= e, y= e.                          -1

j) If y= tan(sin⁻¹x), find dy/dx when x= √3/2.                                           8

k) y=sin(log x) find dy/dx at x=1    1

l) If sinx= y sin(x+π/4), then dy/dx = K cosec²(x + π/4) find K.          1/√2

m) eʸ=x, then dy/dx
A) logx. B) xˣ.  C) log(ex). D) none

n) y= (e²ˣ -1)/(e²ˣ+1), then show that dy/dx= 1 - y²

o) dy/dx of sinx= 2t/(1+t²) , and tany= 2t/(1-t²).                                1

p) If x/(x-y)= log{a/(x-y)}, then dy/dx= 2 - f(x,y). Find f(x,y).        x/y

q) If (x³+y³)/(x³-y³)= sec⁻¹a³, find d²y/dx².                                            0

r) If f(x)= eˣ, g(x)= e⁻ˣ and F(x)= f(g(x)), find dF/dx at x= 0.            -e

s) If y= sin⁻¹(2x-4x³), find dy/dx  
                                             3/√(1-x²)
t) If y= cos (2 sin⁻¹(cosx)), find dy/dx.                                    2 sin2x

u) If y= xᵉ eˣ show, x dy/dx=(x+e)y

v) If y=cosecx+ cotx, then show that d²y/dx² = sinx/(1- cosx)²

w) If y= x - x²/2 + x³/3 - x⁴/4+.... To infinity, prove dy/dx= 1/(1+x)

x) If f(x)=logₓ(logₑx) find f'(x) at x=e                                                        1/e

z) If y= sin⁻¹ x satisfy the Equation (1-x²)y"= f(x). y', find f(x)              x

a) If aˣ + aʸ = aˣ⁺ʸ, show that
 aˣ⁻ʸ. dy/dx +1= 0

b) If y= 1+ x/1! + x²/2! +.....to inf. Find d²y/dx².                                eˣ

c) If y= x/(x+a), show xy'+y(y-1)=0

d) dy/dx of sin(cosx) w.r.t. cosx 
                                        cos(cosx)

e) If y= logₓe , then dy/dx at x= e 
A) 1.   B) 1/e.  C) -1/e.   D) none

f) If x= coal - 2cos³k, y= 3sink-2sin³k, then dy/dx is
A) cotk B)tank. C) seck.D)coseck

g) If y= sin⁻¹(3t- 4t³), x= cos⁻¹(1-2t²), show that dy/dx is independent of t.

h) y= tan⁻¹{x³/² - x¹/²)/(1+x²), find dy/dx at x= 2.                         √2/12

I) If y= tan⁻¹{(1+ log x)/(1- log x)} + tan⁻¹{(1- log x)/(1+log x)} , then dy/dx is equal to
A) 1.      B) 0.     C) 1/x.  D) none

j) If f(x)= tan⁻¹[{√(1+x²) -1}/x] , then f'(0) is equal to
A) 0.   B) 1.     C) 1/2.     D) none

k) If cosec x= -2y log sinx, Prove that, dy/dx + y cot x= 2y² cosx

l) sin⁻¹{t/√(t² +1)} w.r.t.cos⁻¹{1/√(t²+1)}.                                      1

m) If y= log xˣ, then dy/dx is equal to log (ex)

n) If y= 4 cos³x - 3 cosx find d²y/dx² at x= 0.                                          -9

o) If y= sin⁻¹(cosx), find dy/dx.      -1

p) If xʸ = yˣ, find dy/dx.   y²(logx -1)/x²(log y-1)

q) tan⁻¹{2x/(1-x²)} w.r.t cos⁻¹{(1-x²)/(1+x²)}.                                  1

r) xeˣʸ = y+ sin²x then find dy/dx at x=0                                               1



B) Essay type Questions:

1) xᵃ yᵇ = (x+y)ᵃ⁺ᵇ, then prove that dy/dx is independent of a and b. Hence show that d²y/dx² = 0

2) If y= (1+x)ⁿ/(1- x)ⁿ, show that d²y/dx²= 2(n+x)/(1-x²) . dy/dx

3) If y= tan⁻¹(x/y) then evaluate dy/dx and d²y/dx².             y/x, 0

4) If log y=sin⁻¹x prove that, (1-x²)d²y/dx² - x dy/dx = y

5) If y= sin(msin⁻¹x) then prove (1- x²)d²y/dx² - x dy/dx + m²y= 0

6) If y= (sin⁻¹x)² + (cos⁻¹x)² Prove (1- x²)y" - x y'= 4

7) If y= a cos(log x)+ b sin(log x), prove that x² y" + y' + y= 0

8) If x² + xy + y² = a², show that, (x+2y)³ d²y/dx² + 6a² = 0

9) If y²= ax² + 2bx+ c, show that d²y/dx²= (b² - ac)/(ax + b)³

10) If y= A(x+ √(x²-1))ⁿ+ B(x - √(x² - 1))ⁿ, prove (1-x²)y" - x y' + n²y=0

11) If x= cos t and y= log t, then prove that at t=π/2, y" + (y')²= 0

12) If 2x= y¹⁾ᵐ + y⁻¹⁾ᵐ prove that (1-x²)d²y/dx² - x dy/dx + m²y = 0

13) If x= sin t and y= sin nt, show (1-x²)d²y/dx² - x dy/dx +n²y= 0

14) If eˣ= eʸ show (x+y)y"+(y')²= 0

15) If eⁿ sin t and y= eⁿcos t, show (x+y)²d²y/dx²= 2(x dy/dx -y)

16) If y= t² and x= cos t (or sin t), show that, (1-x²)y" - xy' = 2

17) If (a +bx)eʸ⁾ˣ = x show that   x³ y" = (xy' - y)²

18) y= Aeⁿ + Be ⁻ⁿ and x= sin t prove, (1-x²) d²y/dx² - x dy/dx= y

19) If x= eⁿ and d²y/dx² + p²y= 0, show that, x²y" + x y' + p²y= 0

20) If p² = a² cos²k+ b² sin²k, prove, p+ d²p/dk² = a²b²/p³

21) rⁿ= aⁿ cos mk, find the value of (r²+ 2r₁²- r r₂)/(r² +r₁²)³⁾² where dr/dk = r₁ and d²r/dk² = r₂

22) y= ax⁵ + bx⁻⁵, show that x²y"+xy' = 25y

23) If y= sin(2 sin⁻¹x), show that, (1-x³) y" = x y' - 4y

24) If cos x= y cos (a+x), show y"= 2sin a sec²(a+x) tan(a+x)

25) dy/dx of log₇(log₇x)      
                              1/log7 . 1/(x logx)

26) If kx² = y+ √(x²+ y²), prove that x dy/dx= y + √(x²+ y²)

27) If x= 3at/(1+t³), y= 3at²/(1+t³) show y'= {t(2-t³)}/(1-2t³). Also find dy/dx at t= 1/2.                       5/4

28) If sinx= x cos(a+y), then show that dy/dx= {cos²(a+y)}/cos a also find value of dy/dx at x= 0 
                                                Cos a

29) If sec k cos m = C then find  d²m/dk².      
        Cot m(sec²k - tan²k cosec²m)  

30) If y= (sinx- x cos x)/(cosx + x sin x), find dy/dx at x=π/2.        1

31) if y= tan⁻¹{(ax-b)/(bx+a) find dy/dx.                               1/(1+x²)

32) If f(x)=x√(x²+a²) + a²log(x+ √(x²+ a²)), show f'(0)= 2a

33) If u= sin⁻¹x and v= x³, show that dv/du= 3√{v(v¹⁾³ -v)}

34) If y= log[{x+(√x²+a²)}/a]², show (x²+a²)y" + xy' = 2

35) find dy/dx,if eʸ= tan(π/4+ x/2)
                                              Secx

36) y= tan⁻¹{x sin a)/(1- xcos a)} find dy/dx.         sina/(1-2xcos a+x²)

37) y= tan⁻¹{x /(1+20x²)} show dy/dx=5/(1+25x²) - 4/(1+16x²)

38) y=[tan⁻¹{1+√(1-x⁴)}/x²] find dy/dx.                               -x/√(1-x⁴)

39) y= 5x/³√(1-x²) + cos²(2x+1), find dy/dx.         
           5(3-x)/{3(1-x)⁵⁾³}- 2sin (4x+2)

40) y=[sin⁻¹{5x+ 12√(1-x²)}/13], find dy/dx.                                1/√(1-x²) 

41) If xʸ= eˣ⁻ʸ, find dy/dx at x=e
                                                    1/4

42) x= a{cos k+ lo tan(k/2)} and y= a sin k, find dy/dx at k=π/4.    1

43) dy/dx off eˣʸ - 4xy = 4       -y/x

44) If x= sin²t/√cos 2t and y= cos²t/√cos 2t, show y²y" = 1

45) y= (x-a)/2 √(2ax- x²) + a²/2 sin⁻¹{(x-a)/a}.                √(2ax - x²)

46) If sin y= x sin(a+y), show that y"=2cosec² a sin³(a+y)cos(a+y)

47) If y= 1/3 log{(x+1)/√(x²-x+1)} + 1/3 tan⁻¹{(2x -1)/√3}, Prove that dy/dx= 1/(x³ +1)

48) If y= (1+sinx-cosx)/(1+sinx+cosx), then show that dy/dx= 1/(1+cosx)

49) If y= sec 4x, then show that dy/dx= {16t(1-t⁴)}/(1-6t²+t⁴)², where t= tanx.

50) If x= sin³t/√cos2t and y= cos³t/√cos2t  (0<t<π/4) show that dy/dx= 0 at t= π/6

51) If tan y= log x², show that x²dy/dx +(1+2 sin 2y)(1+cos 2y)= 0.

52) Diff. Of  sec⁻¹{(1+x²)/(1-x²)} w.r.t.x  tan⁻¹{(3x-x³)/(1-3x²)}.   2/3

53) If y= eᵃˣ cos bx, show that d²y/dx²= (a²+b²)eᵃˣ cos(bx + 2tan⁻¹(b/a))

54) dy/dx of y= xᶜᵒˢ ˣ + sin(log x)
 xᶜᵒˢ ˣ((1/x) cos x - sinx log x) + (1/x) cos(log x)

55) y= xˣ log(sin x)ˢᶦⁿ ˣ.                   xˣ log(sin x)ˢᶦⁿ ˣ. [1+ logx + cotx + cotx/log sinx]

56) If y= sinᵃx prove sin²x y"= (m² cos²x - m)y

57) xˣ + (cos x) ˣ.     xˣ(1+ log x) + (cos x) ˣ[ log cos x - x tan x]

58) tan⁻¹{√(1+x²)- √(1-x²)}/{√(1+x²)+√(1-x²)} w.r.t cos⁻¹{(x²).                                 -1/2

59) x= 2cos - cos 2t and y= 2 sin t - sin 2t, find d²y/dx² at t=π/2.      -3/2

60) If √(1-x⁴)+ √(1-y⁴)= k(x² - y²), show y'= {x√(1-y⁴)}/{y√(1-x⁴)}

61) If xy= a{y+√(y² - x²)}, show that x³y'= y³ + y²√(y² - x²)

62)  y=(2x-3)⁵⁾²/{2x-1)³⁾²(2x-5)¹⁾²} find dy/dx at x=3.             3√15/125

63) y= (a+bx)eᵐˣ, a, b, m are constant, show y"-2my'+m²y= 0

64) If tan⁻{(sinx-xcosx)/ (cosy+xsinx)}, find dy/dx. Also find the value of dy/dx at x=1
                                   x²/(1+x²), 1/2

65) if aʸ⁾ˣ = (x+1)e⁻¹⁾ˣ, show that, x(x+1) d²y/dx² + x dy/dx = y

66) If y= (tan⁻¹x)², show that, (1+x²)²d²y/dx² + 2x(1+x²) dy/dx=2

67) If √x/y + √y/x= 6, then show that, dy/dx= (x-17y)/(17x- y)

68) If y= ax/√(a² + x²), prove that (a²+ x²) d²y/dx² + 3x dy/dx = 0

69) find dy/dx, if xʸ = yˣ= aˣ⁺ʸ 
  (xʸ(loga -y/x) + yˣlog a/y)/(xʸlogx/a + yˣ(x/y - loga)) 

70) If f(x)={(a+x)/(1+x}ᵃ⁺¹⁺²ˣ Prove f'(0)=(log a² +(1-a²)/a}aᵃ⁺¹

71) If y= √3(3cosk + cos 3k) and x= √3(3sink + sin 3k), find d²y/dx² at k=π/3.                                  16√3/9

72) y= 2tan⁻¹x[x/{1+√(1-x²)}] + sin[tan⁻¹√{(1-x)/(1+x)}]. 
                                  √{(1-x)/(1+x)}

73) If x²/a² + y²/b² = 1, prove that a²y² d²y/dx² + b⁴= 0

74) If y= x√(x²+a²)³+ (3/2) a²x √(x²+a²) +(3/2) a⁴ log{x+√(x²+a²)} find dy/dx.                      4√(x²+ a²)³

75) dy/dx of x + √(a²+x²). 
                       {x+√(a²+x²)}/√(a²+x²)

76) y= log[{√(x²+a²)+√(x²+b²)}/{√(x²+a²) - √(x²+b²)}], show that dy/dx= 2xloge/√{√(x²+a²)(x²+b²)}

77) If y= (1/4√2) log(x²+ x√2+1)/(x²- x√2+1) +(1/2√2) tan⁻¹{x√2/(1-x²)}, show that dy/dx= 1/(x⁴+1)

78) y=cot⁻¹[{√(1+sinx)+ √(1-sinx)}/{(1+sinx - √(2-sinx)}]. Find dy/dx.                                          1/2

79) If y= log y= x then prove that (x+y) d²y/dx² + (dy/dx)² = 0

80) dy/dx of (tan⁻¹x)ʸ + y cot x=1     
  
81) If x= f(t), y= g(t) and d²y/dx²= 0, then show that
dx/dt . d²y/dt²= dy/dt . d²x/dt²    

82) If ax²+ 2hxy+ by²+ 2gx + 2fy+ c= 0, then show that y"=(abc+2fgh-af²-bg²-ch²)/(hx+by+f)³

83) If 3kx²= y²(k - x⁶), then show that dy/dx= y³/x³ - 2y/x

84)dy/dx: when √(1-y²)+√(1-t²) = a(y-t) and x=sin⁻¹{t√(1-t)+√t√(1-t²)  Express your result as a function of y and t, independent of a.                                      2√t√(1-y²)/(2√t+√(1+t))

85) If y= f{(2x-1)/(x²+1)} and f'(x)= sinx², find dy/dx.    2(1+x-x²)/(1+x²)² sin[{(2x-1)/(x²+1)}²]

86) If x= sec k - cos k and y= secⁿk - cosⁿk then show that (x²+4) d²y/dx² + x dy/dx = n²y

87) If ky= sin(x+y), prove that d²y/dx² + y(1+ dy/dx)³= 0

88) If y= xⁿ⁻¹ log x then show that, x²y"+ (3-2n)xy' + (n -1)²y= 0

89) If y= a sin(log x)+ b cos(log x) find d²y/dx² when dy/dx= 0.
                                               -2(a+b)

90) y= 1 + a/(x-a) +bx/{(x-a)(x-b)} + cx²/{(x-a)(x-b)(x-c)} show that y'= y/x {a/(a-x) + b/(b-x) + c/(c-x)}

91) dy/dx of tan⁻¹{x/a + tan⁻¹y/x}.                                                         1/8

92) y= ₓyˣ  find dy/dx