EXERCISE -A
1) ⁿP₂ = 12 Then n =
a) 2 b) 3 c) 4 d) 5
2) ⁿP₅ = 20. ⁿP₃ then find n
a) 7 b) 6 c) 9 d) 8
3) ⁿP₅ : ⁿP₃= 2 :1 then n=
a) 4 b) 5 c) 6 d) 7
4) ⁿP₃ : ⁿP₂=3:1 then n=
a) 4 b) 5 c) 6 d) 7)
5) ᵐ⁺ⁿP₂=56 and ᵐ⁻ⁿP₂=12 find m,n
a) 6,4 b) 6,6 c) 4,6 d) 6,2
6) ¹⁰Pᵣ₋₁: ¹¹Pᵣ₋₂=30:11 find r
a) 7 b) 8 c) 9 d) 11
7) ⁵⁶Pᵣ₊₆ : ⁵⁴Pᵣ₊₃ = 30800 :1 find r
a) 49 b) 41 c) 51 d) 59
8) ⁿP₁₃ : ⁿ⁺¹P₁₂ = 3:4find n
a) 14 b) 16 c) 15 d) 17
9) ²ⁿ⁺¹Pₙ₋₁ : ²ⁿ⁻¹Pₙ= 3:5
a) 4 b) 6 c) 8 d) 10
10) ⁿ⁺ʳP₂ = 110 and ⁿ⁻ʳP₂=270 find n,r
a) 8,4 b) 8,3 c) 4,8 d) 8,5
11) ⁿ⁺¹⁺ʳP₂ =72, ⁿ⁻ʳP₂=12 find n , r
a) 6,6 b) 6,4 c) 6,2 d) 6,1
12) Find H.C.F of 3!,5!,7!
a) 3 b) 6 c) 2 d) 1
13) Find L. C. M of 3!,5!,7!
a) 6! b) 8! c) 7! d) none
14) Compute 8!/((4!)(3!))
a) 56 b) 6 c) 5 d) none)
15) Convert in to factorial 6, 7, 8, 9.
a) ⁹P₄ b) ⁹P₅ c) 9! d) none
16) (n+1)!=12(n-1)! Find n
a) n-1 b) n+2 c) n d) none
17) 1/9! +1/10! =n/11! Find n
a) 111 b) 121 c) 131 d) none
18) What is the largest integer n such that 33! is Divisible by 2ⁿ
a) 32 b) 64 c) 31 d) 29
19) (2+3)!=2!+3!
A) true B) False
20) (2x3)!=(2!)x(3!)
A) True B) False
21) Evaluate. n!/{(r!).(n-r)! }When n=15 and r=12.
a) 455 b) 545 c) 554 d) none
22) (n+2)!=60(n-1) ! find n
a) 3 b) 4 c) 5 d) 6
EXERCISE - B
1) There are 10 trains moving between Calcutta and Delhi. In how many ways can a man go from Calcutta to Delhi and return by a different one ?
a) 100 b) 90 c) 120 d) none
2) There are 26 stations on a railway line. How many different kinds of tickets of class II must be printed in order that a passenger may go from any one station to another by purchasing a ticket.
a) 65. b) 240. c) 650. d) 1300
3) There are four bus lines between A & B and there are 3 bus lines between B & C. In how many ways can a man take round trips by bus from A to C by way of B, if he does not want to use a bus line more than once ?
A) 36. B) 24. C) 72. D) 120 E) none
4) In s class after every student had sent greeting cards to the other student, it was found that 1640 cards were exchanged. Find the number of students in the class.
A) 40. B) 39. C) 41. D) 42
*** You are given the letters of the word “MONDAY”. Find the number of arrangements in the following cases:
5) Without any restriction.
a) 120 b) 144 c) 720 d) 360
6) Words beginning with M.
a) 120 b) 240 c) 360 d) 720
7) Words beginning with Y.
a) 24 b) 120 c) 96 d) 144
8) Words beginning with M & ending with Y.
a) 24 b) 96 c) 144 d) 240
9) Words beginning with M & not ending with Y.
a) 24 b) 96 c) 360 d)144
10) M & Y are at two extremes.
a) 24 b)48 c)96 d)144
11) Vowels are together.
a) 120 b) 144 c) 249 d) 360
12) Vowels are never together.
a) 144 b) 240 c) 360 d) 480
13) Vowels occupy odd places.
a) 480 b) 240 c) 120 d) 144
14) Vowels occupy even places.
a) 240 b) 156 c) 144 d) 360
15) Relative position of the vowels and consonants are to be kept untouched
a) 96 b) 48 c) 56 d) 144
16) Constants are together.
a) 96 b) 120 c) 144 d) 240
17) How many words can be formed by taking four letters at a time.
a) 240 b) 120 c) 360 d) 700
18) In how many of these (given in previous question) M is always included
a) 240 b) 120 c) 360 d)144
19) In how many of these (given on Q. No. xiii) M is excluded.
a) 240 b) 360 c) 120 d) 144
20) Number of rearrangement of word Monday
a) 720 b) 719 c) 360 d) 717
21) In how many words MO will be together.
a) 240 b) 420 c) 360 d) none
22) Find the number of words may formed by the word FATHER. Also find the number of words may formed when words begin with A and end with R ?
a) 720, 48. b) 720, 24
c) 360, 48. c) 360, 24
*** You are given a word DELHI
23) How many arrangements can be formed with the letter DELHI.
a) 120. b) 24. c) 96. d) 48
24) How many of them will begin with D
a) 96. b) 24. c) 48. d) 100
25) How many do not begin with D
a) 48. b) 24. c) 96. d) 120
26) In how many words LH will be together ?
a) 12. b) 24. c) 48. d) 96
27) How many words can be formed of the letters in the word COSTING, the vowel being not separated ?
a) 144. b) 1440. c) 1280. d) 2880
28) In how many ways can the letters of the word LAUGHTER be arranged so that the vowel may never be separated ?
A) 4320. B) 2480. C) 1440.D) 2880
29) How many words can be formed of the letters in the word ARTICLE so that the vowels may occupy only.
A) the even positions B) the odd positions
a) 144, 576. b) 576, 144 c) 280, 144. d) 288, 144
30) Find how many words can be formed of the letters in the word FAILURE is the four vowels.
A) always coming together B) never coming together
a) 576, 576. b) 576, 4464 c) 5764, 4464 d) none
31) If the letter of the word JUXTAPOSED be arranged in all possible different ways, in how many of these will the vowels occur together ?
A) 60480 B) 30240 C) 120960 D) N
32) In how many ways can the letters of the word MOBILE be arranged so that the consonants always occupy the odd places?
A) 24. B) 72. C) 36. D) 144
33) In how many different ways can the letters of the word VALEDICTORY be arranged so that the vowels are
A) never separated B) not together
a) 997680, 38949120 b) 986578, 34569810 c) 997680, 34597870. D) none
34) In how many different ways can the letters of the word STRANGE be arranged so that the vowels are A) never separated B) not together
a) 3600, 1440. b) 1800, 720 c) 1440, 3600. d) 720, 1800
35) How many arrangements of the letters of the word COMRADE can be made
A) if the vowels are never separated
B) if the vowels are to occupy only odd places.
a) 604800, 7200 b) 604800, 14400 c) 302400, 14400. d) none
EXERCISE - C
*** In how many ways can 8 sweets of different sizes be distributed among 8 boys of different ages, so that
1) Largest sweet goes to the youngest boy ?
a) 2520. b) 1240. c) 5040. d) none
2) Smallest sweet goes to the older boy ?
a) 2520. b) 1240. c) 5040. d) none
3) Largest sweet goes to the youngest and smallest sweet goes to the older .
a) 2520. b) 1240. c) 5040. d) none
4) In how many ways can 8 examination papers be arranged in a row, so that the best and worst papers may never come together ?
A) 15120 B) 30240 C)60480 D) n
5) The Number of ways in which 16 different books can be arranged on a shelf so that two particular books shall not be together.
A) 14.15! B) 15.14!
C) 14.14! D) 15. 15!
6) Six papers are set in an examination, of which two are mathematical. In how many different orders can the papers be arranged so that
A) the two mathematical papers are together.
b) the two mathematical papers are not consecutive ?
a) 480, 240 b) 240, 120 c) 360, 120 d) 120, 76
7) In how many ways can 6 plastics beads of different colours be arranged so that the blue and green beads are never placed together?
A) 240. B) 120. C) 360. D) 480
8) In how many ways can 3 boys and 5 girls be arranged in row so that no 2 boys are together?
A) 14400 B) 604800 C) 2880 D) 28800
9) In how many ways can 5 boys and 4 girls be arranged in a row so that the boys and the girls stand alternatively ?
A) 28800 B) 14400 C) 2880 D) 60480
10) In how many ways can 5 boys and 5 girls be arranged in a row so that they stand alternatively.
A) 14400 B) 2880 C) 604800 D) 28800
11) In how many ways 6 boys and 4 girls be arranged in a row so that no girls are together ?
A) 604800 B) 288000 C) 144000 D) 720000
12) A dinner is arranged for 11 guests in which there are 4 children, 1 old man and 6 adults. The 4 children wish to occupy 4 corner seats and the old man refuses to have a child on his either side. In how many can all guests be arranged ?
A) 28800 B) 43200 C) 86400 D) 14400
EXERCISE - D
*** You are given the letters of the word BALLOON. Find the arrangement.
1) Without any restriction
A) 960. B) 1060. C) 1160. D) 1260
2) Two LL will always come together.
a) 720 b) 360 c) 180 d) 120
3) Two LL and two OO will always come together.
a) 360 b) 480 c) 180 d) 120
4) All the O's & the L's will come together.
a) 120 b) 184 c) 144 d) 168
5) Vowels are together
a) 180 b) 120 c) 360 d) 240
6) B & N are together
a) 180 b) 120 c) 360 d) 240
7) B & N are never together.
a) 900 b) 980 c) 160 d) 720
8) B,N & O's are together.
a) 288 b) 142 c) 144 d) 368
9) Two OO's together
a) 288 b) 142 c) 144 d) none
*** Find the number of arrangements that can be made out of the letters of the following words:
10) CALCUTTA
i) 5040 ii) 4050
iii) 6050 iv) 2530
11) ACCOUNTANT
i) 226980 ii) 228600
iii) 226800 iv) 365980
12) CONTACT
i) 1620 ii) 1560
iii) 1260 iv) 3540
13) ATLANTIC
i) 18000 ii) 10080
iii) 18020 iv) 15950
14) MATHEMATICS
i) 4989600 ii) 4998960
iii) 5987590 iv) 4545450
15) INSTITUTION
i) 554499 ii) 445588
iii) 554400 iv) none
16) STATISTICS
i) 5544000 ii) 4978960
iii) 4589600 iv) 4989600
17) ENGINEERING
a) 272700 b) 277200
c) 288750 e) 288770
18) MISSISSIPPI
i) 34650 ii) 35640
iii) 45630 iv) 56340
*** All different words formed by the letters of the word BHARAT
19) How many different words can be formed with the letters of the word BHARAT?
i) 720. ii) 360. iii) 180. iv) 240
20) In how many of these B and H are never together?
i) 360. ii) 180. iii) 240. iv) 120
21) How many of these begin with B and end with T ?
i) 15. ii) 12. iii) 18. iv) 21
22) How many different words can be formed with the letters of the word CAPTAIN? In how many of these C and T are never together?
i) 2520, 1600. ii) 2520, 1890
iii) 2520, 1800. iv) 3250, 1800
23) In How many ways can the letters of the word ALGEBRA be arranged? In how many of these arrangements will the two A's not come together?
i) 2520, 1890 ii) 2520, 1800
iii) 3520, 1800. iv) none
24) Find how many different words can be formed from the letters of the word PEOPLE in which two P's would not remain side by side.
i) 100. ii) 125. iii) 160. iv) 120
25) In how many ways can the letters of the word CONSTITUTION be arranged? How many of these will have the letter N both at the beginning and at the end?
i) 9979200, 151200
ii) 9989920, 152150
iii) 9979000, 151000. iv) none
26) In how many different ways can the letters of the word VIDYAPITH be arranged? How many arrangements begin with V but do not end with H ?
I) 181000, 176000
ii) 181400, 17640
iii) 181440, 17640
iv) 182000, 18600
27) The number of ways in which the letters of the word ARRANGE can be arranged that the two R's do not come together is:
i) 900 ii) 1800. iii) 450. c) 720
28) In how many ways can be letters of the word EXAMINATION be arranged so that all the A's always come together?
i) 907200. ii) 120960
iii) 962000. iv) 288000
29) In how many ways can the letters of the word AGARTALA be arranged?
i) 1600 ii) 1800 iii) 1980 iv) 1680
30) Taking data from Q. 29, in how many of these will the 4 A's
A) come together B) not together
i) 120, 1560. ii) 360, 1620
iii) 300, 1500. iv) 220,1380
31) In how many ways can 5 dots (.) and 3 crosses (x) be arranged in a row ?
i) 36 ii) 46. iii) 66. iv) 56
32) A library has 5 copies of one book, 4 copies of each of the two books, 6 copies of each of the 3 books and single copies of eight books. In how many ways can all the books be arranged ?
i) 39!/{5! 4! 4! 6!}. ii) 39!/{5! 4! 6!}.
iii) none. iv) both of the above
33) In how many ways the letters of the word MULTIPLE can be rearranged without changing the order of the vowels?
A) 30239. B) 3359
C) 33590. D) 32590
34) In how many ways can the letters of the word PARNECIOUS be arranged without changing the order of the vowels?
A) 33590. B) 30239
C) 14400. D) 28800
35) Find the number of different arrangements that can be made of the seven prismatic colours (Violet, Indigo, Blue, Green, Yellow, Orange and Red) so that the Violet and Red shall never come together?
A) 5040. B) 1440. C) 3600. D) N
36) There are six students of whom 2 are Indians, 2 Americans and the remaining are Russians. They have to stand in a line so that the two Indians are together, the 2 Americans are together, and also the 2 Russians are together. Find the number of ways in which they can do so ?
A) 48. B) 84. C) 8. D) none
37) How many different arrangements can be made out of the letters in the expression x²y⁴z³ when written at full length ?
A) 7200. B) 3600. C) 1260 D)1800
EXERCISE - E
*** With the digits 1,2,3,4,5,6 Find
1) 6 digits numbers
i) 120 ii) 320 iii) 520 iv) 720 v) N
2) 5-digit numbers
i) i) 120 ii) 320 iii) 520 iv) 720 v) N
3) 4-digits numbers
i) 120 ii) 240 iii) 360 iv) 480 v) N
4) 3-digit numbers
i) 120 ii) 240 iii) 360 iv) 480 v) N
5) 2-digit numbers
i) 30 ii) 60 iii) 120 iv) 240 v) N
6) 1-digit numbers
i) 6 ii) 12. iii) 24 iv) 30 v) N
*** With the digits 1, 2, 3, 4, 5 find the numbers.
7) Greater than 30000
i) 96 ii) 120 iii) 144 iv) 1440 v) N
8) Greater than 2000
i) 216 ii) 219 iii) 312 iv) 240 v) N
9) 4-digit numbers greater than 2000
i) 72 ii) 96 iii) 120 iv) 1440 v) N
10) Greater than than 400
i) 24 ii) 120 iii) 144 iv) 1440 v) N
11) 3-digit greater than 400
i) 24 ii) 36 iii) 48 iv) 60 v) N
**** You have the number 2,3,4,5,6 find the following:
12) 5 digit number
i) 120. B) 210. C) 720. D) none
13) 5 digit number greater than 30000
i) 24. ii) 42. iii) 68 iv) 96. v) N
14) Greater than 3000
i) 96. ii) 216. iii) 2160. iv) n
15) 4 digit number greater than 3000.
i) 96 ii) 216. iii) 144. iv) 210 v) N
16) 5-digit number divisible by 5
i) 24. ii) 42. iii) 120 iv) 210 V) N
17) The numbers not divisible by 5
i) 520. ii) 420. iii) 1200 iv) 96 v) n
18) 5-digit numbers not divisible
by 5
i) 1200 ii) 1440 iii) 72 iv) 720 v) n
19) Between 2000 and 4000
i) 24 ii) 48 iii) 96 iv) 144 v) n
20) Greater than 23000
i) 69 ii) 96 iii) 102 iv) 120 v) N
21) Divisible by 4
i) 48 ii) 72. iii) 96 iv) 102 v) N
22) Not divisible by 4
i) 36 ii) 720 iii) 1440 iv) 720 v) N
23) Greater than 3200
i) 321 ii) 498 iii) 498 iv) 984 v) N
24) Less than 3000
i) 60 ii) 600 iii) 6000 iv) 72 v) N
25) Less than 2400
i) 321 ii) 498 iii) 498 iv) 984 v) N
26) How many 5 digits numbers can be formed with the digits 4,5, 6, 7, 8, and 9
A) 120. B) 720. C) 144. D) 480
27) Find the number of numbers Greater than 3000 that can be formed with the digits 2,3,4,5,6
A) 216. B) 219. C) 312. D) 240
28) How many numbers Greater than 5000 can be formed with the digits 2,3,4,5,6 when no digits is repeated ?
A) 216 b) 212 c) 182 d) 180 e) n
29) find the number of numbers Greater than 3000 that can be formed from the digits 1,2,3,5,7
A) 212 b) 192. C) 216 d) 180 e)N
30) Find the number of numbers Greater than 6000 that can be formed with the digits 1,4,6,8,9.
A) 212 b) 180 c) 216 d) 192 e) N
31) How many 6 digit number can be formed with 3,4,5,6,7,8? How many of them
a) Divisible by 5 b) not Divisible by 5
i) 720,120,600 ii) 720,600,120
iii) 780,600,180 iv) 780,180,600
32) How many numbers between 4000 and 5000 can be formed with the digits 2,3,4,5,6,7
A) 40. B) 50. C) 60. D) 80
33) How many numbers Greater than 7000 can be formed from the digits 1,3,5,7,8,9
A) 129 b) 192 c) 178 d) 287 e) N
34) How many even numbers Greater than 300 can be formed with the digits 1,2,3,4,5
A) 121. B) 111 c) 222 d) 124 e) N
35) How many numbers can be formed with the digits 3,4,5,6,7? How many of them are greater than 5600 ?
A) 180. B) 120 c) 160 d) 360 e) N
EXERCISE - F
*** You have the number 0,1,2,3,4 find the following :
1) 5 digit number
i) 48 ii) 96 iii) 24 iv) 120 v) none
2) 3 digit number.
i) i) 48 ii) 96 iii) 24 iv) 120 v) none
3) Number between 400 to 4000
i) 48 ii) 96 iii) 24 iv) 120 v) none
4) Greater than 3000
i) 48 ii) 96 iii) 24 iv) 120 v) none
5) Less than 1000 Divisible by 5
i) 48 ii) 96 iii) 24 iv) 120 v) none
6) Odd numbers
i) 48 ii) 96 iii) 24 iv) 120 v) none
7) Even numbers
i) 48 ii) 96 iii) 24 iv) 120 v) none
8) Divisible by 4
i) 48 ii) 96 iii) 24 iv) 120 v) none
9) Not divisible by 4
i) 48 ii) 96 iii) 24 iv) 120 v) none
10) Even numbers greater than 3000.
i) 48 ii) 96 iii) 24 iv) 120 v) none
11) Less than 3000.
i) 48 ii) 96 iii) 24 iv) 120 v) none
12) Less than 4000 more than 40.
i) 48 ii) 96 iii) 24 iv) 120 v) none
13) How many numbers of four different digits each Greater than 400 can be formed from the digits 1, 3, 4, 6, 7 & 0 ?
A) 160 b) 180 c) 150 d) 240 e) N
14) How many 4 digits numbers can be formed with the digits 0,1, 2, 3, 4,5 and 6
A) 360 b) 480 c) 600 d) 720 e) N
15) How many odd numbers of 6 digits can be formed with the digits 0, 2,3,4,5,6.
A) 144 b) 212 c) 288 d) 480 e) N
16) How many numbers between 100 and 1000 can be formed with the digits 3,4,5,0,7,9
A) 120 b) 100 c) 150 d)180 e) n
17) How many numbers Greater than a million can be formed with the digits 2,3,0,3,4,2,3
A) 240 b) 180 c) 540 d) 360 e) n
18) How many numbers less than 1000 and divisible by 5 can be formed with the digits 0,1,2,3,4,5.. and 9,
A) 145 b) 165 c) 154 d) 194 e) N
19) How many numbers between 300 and 3000 can be formed with the digits 0,1,2,3,4,5
A) 180 b) 120 c) 160 d) 240 e) N
20) How many numbers of 4 different digits Greater than 5000 can be formed from the digits 1,4,5,7,8 and 0 ?
A) 180 b) 360 c) 240 d) 120 e) N
21) How many numbers lying between 100 and 1000 can be formed with the digits 5,0,6,7,9. How many of these are odd?
A) 48,81 B) 48, 18. C) 38, 18
D) 129, 232. E) none of these
EXERCISE - G
1) In how many ways 8 persons can be seated at a round table?
A) 5040 B)40320 C)2020 D)2520
2) In how many ways can 8 persons can be seated at a round table so that 2 particular persons can be together?
A) 180 B)240 C) 360 D) none
3) Find the no of ways in which 5 beads can be arranged to form a necklace.
A) 12 B) 24 C) 36 D) 48
4) In how many ways can 4 MBA & 4 MCA be seated at the round table so that 2 MBA students are adjacent.
A) 12 B) 24 C) 96 D)144
5) In how many ways can 7 Englishman & 6 Indians be seated at the round table so that 2 indians are together.
A) 2488000 B)3628000 C) 3628800 D) none
6) In how many ways can 5 Gentleman & 4 ladies be seated at the round table so that no 2 ladies are together.
A) 14400 B)28800 C) 28880 D)2880
7) 20 persons are invited to a party. In how many ways can they and host be seated at a circular table? In how many of these 2 particular persons be seated side of the host ?
A) (18!), 2(20!) B)(18!), (20!) C) (20!),(18!), D) (20!) (18!)
8) In how many ways can 8 persons form a ring ?
A) 5040 B) 40320 C)1220 D)2880
9) In how many ways can 8 persons can be seated at a round table, with respect to the table ?
A)40320 B) 5040 C) 720 D) none
10) In how many ways , as given in the previous question, do 3 perticular persons sit side by side?
A) 4320 B) 5040 C)720 D)1400
11) In how many ways can 6 ladies and 6 gents be arranged at a round table, if the two particular ladies Miss X and Miss Y refuses to sit next to Mr. Z, all men being separated?
A) 1278 B)1730 C)1729 D)1687
12) In how many ways can 8 stones of different colours be arranged on a ring? In how many of these arrangements red and yellow beads being separated?
A) 2520,900 B) 2520,1800 C) 1800, 2520 D) 1800, 1260
*** A round table conference is to be held for a committee of 7 persons which includes President and Secretary. Find the no of ways the committee can be seated so that
13) The president and Secretary can sit together.
A) 120 B) 240 C) 360 D) 480
14) The secretary sits on the right side of the President
A) 120 B) 240 C) 360 D) 480
15) The President and the secretary do not sit together.
A) 120 B) 240 C) 360 D) 480
16) In how many ways can 5 Gentleman and 5 ladies be seated at a round table so that no 2 ladies are together? What is the number if there are 4 ladies instead of 5 ?
A) 1440,1440 B) 2880,1440 C)1440,2880 D) 2880,2880
17) Find the no of ways in which 8 different flowers can be strung to form a garland of which 4 particular flowers are never separated.
A) 288 B) 144 C) 122 D) 140
18) In how many ways can 7 persons be seated at around table so that all shall not have the same neighbour in any two arrangements.
A) 720 B) 240 C) 360 D) 120
EXERCISE - H
Continue..........
Mg. A. R-1
1) There are 10 trains playing between Kolkata and Delhi. In how many ways can a man go from Kolkata to Delhi and return by different train?
A) 90. B) 120 C) 720 D) 210
2) There are 26 stations on a certain railway line. How many different kinds of tickets of class II must be printed in order that a passenger may go from one station to any other by other by purchasing a ticket.
A) 600 B) 650. C) 660 D) 720
3) Five letters are written and five envelopes directed; in how many ways can the letters be put in the envelopes?
A) 120. B) 72 C) 420 D) 210
4) How many different numbers of 5 digit can be formed with the digits 1, 2, 3, 4, 5, 6, none of the digits being repeated in any of the numbers so formed?
A) 120 B) 216 C) 600 D) 720.
5) Find the total number of numbers greater than 2000 that can be formed with the digits 1, 2, 3, 4, 5, no digit being repeated in any number.
A) 120 B) 216. C) 600 D) 720
6) How many numbers greater than 4000 can be formed with the digits 2, 3, 4, 5, 6 when no digit repeated.
A) 120 B) 192. C) 210 D) 212
7) Find the total number of numbers greater than 3000 that can be formed with the digits 1, 2, 3, 4, 5, no digit repeated in any number.
A) 120 B) 192. C) 210 D) 212
8) How many words can be formed using all the letters of the word MYSORE?
A) 210 B) 420 C) 640 D) 720.
** In how many different ways can the letters of the word
9) MONDAY be arranged?
A) 120 B) 96 C) 720. D) 90
10) How many of these are arrangements begin with M?
A) 120. B) 96 C) 720 D) 90
11) How many begin with M and do not end with N?
A) 120 B) 96. C) 720 D) 90
** Find the number of words that can be formed by considering all possible permutations of the letters of the word
12) FATHER
A) 120 B) 96 C) 720. D) 90
13) How many of these words begin with A and end with R?
A) 120 B) 96 C) 720 D) 24.
** How many arrangement can be formed
14) with the letters of the word DELHI ?
A) 120. B) 24 C) 96 D) 48
15) How many of them will begin with D?
A) 120 B) 24. C) 96 D) 48
16) How many do not begin with D?
A) 120 B) 24 C) 96. D) 48
17) In how many words LH will be together ?
A) 120 B) 24 C) 96 D) 48.
18) How many words can be formed with the letters in the word COSTING, the vowels being not separated ?
A) 1440. B) 1400 C) 1340 D) 1210
19) In how many ways can the letters of the word LAUGHTER be arranged so that the vowels may never be separated ?
A) 1440 B) 3440 C) 4320. D) none
20) In how many ways can 8 sweets of different sizes be distributed among 8 boys of different ages, so that the largest sweet always goes to the youngest boy? (assume that each boy gets a sweet)
A) 4080 B) 5000 C) 5040. D) n
** How many words can be formed with the letters in the word ARTICLE, so that vowels may occupy only
21) The even positions.
A) 144. B) 576 C) 720 D) 800
22) the odd positions?
A) 144 B) 576. C) 720 D) 800
** Find how many words can be formed with the letters in the word FAILURE, if the four vowels
23) always coming together.
A) 576. B) 4464 C) 10080 D) n
24) never coming together.
A) 576 B) 4464. C) 10080 D) n
25) If the letters of the word JUXTAPOSED be arranged in all possible different ways, in how many of these will be vowels occur together?
A) 12000 B) 120000 C) 120960. D) 130000
26) In how many ways can the letters of the word MOBILE be arranged so that the consonants always occupy the odd places?
A) 36. B) 72 C) 144 D) 288
Mg. A- R .2
1) In how many different orders can 8 examination papers be arranged in a row, so that the best and the worst papers may never come together ?
A) 240 B) 3240 C) 300 D)30240.
2) Find the number of ways in which 16 different books can be arranged on a shelf so that two particular books shall not be together is...
A) 14! B) 15! C) 14. 15! D) none
** Six paper are set in an examination, of which tow are mathematical. In how many different orders can the papers be arranged so that
3) the two mathematical papers are together.
A) 240. B) 480 C) 720 D) 1440
4) the two mathematical papers are not consecutive?
A) 240 B) 480. C) 720 D) 1440
5) In how many ways can 6 plastic beads of different colours be arranged so that the blue and green beads are never placed together?
A) 240 B) 480. C) 720 D) 1440
6) How many four-digits numbers can be formed with 1, 2, 3, 4,5, 6, 0, none of these digits occuring more than once in each number?
A) 60. B) 480 C) 720 D) 1440
7) In how many ways can 6 boys and 4 girls be arranged in a row that so that no two girls are together ?
A) 240. B) 480 C) 720 D)604800
8) In how many ways can 5 girls and 3 boys stand in a row so that there no two boys are together?
A) 240. B) 480 C) 720 D) 14400
** Find the number of arrangements that can be made out of the letters of the following words:
9) CALCUTTA
A) 5040. B) 226800 C) 1260 D) 10080
10) ACCOUNTANT
A) 5040 B) 226800. C)1260 D) 10080
11) CONTACT
A) 5040 B) 226800 C) 1260. D) 10080
12) ATLANTIC
A) 5040 B) 226800 C) 1260 D) 10080.
13) MATHEMATICS
A) 5040. B) 226800 C) 1260 D) 4989600
14) In how many ways can the letters of the word BALLOONS be arranged so that the two O's are always together ?
A) 300. B)360 C)240 D) 12
* BHARAT
15) How many different words can be formed with the letters given above
A) 300 B) 360 C) 240 D) 12
16) In how many of these B and H are never together?
A) 300 B)360 C)240. D) 12
17) how many of these begin with B and end with T ?
A) 300 B)360 C)240 D) 12.
**How many different words can be formed with the letters
18) of the word CAPTAIN ?
A) 2520. B) 1800 C)120 D) none
19) In how many of these C and T are never together?
A) 300 B)360 C)240 D) 1800.
** In how many ways can the letters of the word
20) ALGEBRA be arranged?
A) 2520. B) 1800 C)120 D) none
21) In how many of these arrangements will the two A's not come together?
A) 2520 B) 1800. C)120 D) none
22) Find how many different words can be formed from the letters of the word PEOPLE in which two P's would not remain side by side
A) 100 B) 120. C) 240 D) 300
*** In how many different ways can the letters of the word
23) CONSTITUTION be arranged?
A) 9979200. B) 151200 C) 9989790 D) 151320
24) How many of these will have the latter N both at the beginning and at the end?
A) 9979200 B) 151200. C) 9989790 D)151320
* In how many different ways can the letter of the word
25) VIDYAPITH be arranged?
A) 9979200. B) 151200 C) 9989790 D) 181440.
26) how many arrangements begin with V but do not end with H?
A) 9979200. B) 151200
C) 9989790 D) 17640.
Mg. A- R-3
1) If five coins are tossed, find the number of ways in which atleast one head will turns up.
A) 31. B) 15 C) 144 D) 720
2) In a Senior Secondary examination a candidate is required to pass the four different subject. In how many ways can be fail ?
A) 31 B) 15. C) 144 D) 720
3) In how many different ways can you arrange three girls and 4 boys in a row so that no two boys sit together ?
A) 31 B) 15 C) 144. D) 720
4) In how many ways the letters of the word ECONOMICS be arranged so that no two consonants come together?
A) 31 B) 15 C) 144 D) 720.
5) find the rank of the word MAKE, when its letters are arranged as in a dictionary (with or without meaning)
A) 29. B) 15 C) 144 D) 720
6) How many numbers of four different digits is greater than 4000 can be formed from the digits 2, 3, 4, 6, 7, 0?
A) 31 B) 15 C) 180. D) 720
7) How many numbers greater than 6000 can be formed with the digit 2, 4, 6, 7, 8 no digit being repeated.
A) 31 B) 15 C) 192. D) 720
** How many numbers of 6 digits can be formed from the digits 3, 4, 5, 6, 7, 8 (no digit being repeated). How many of these are
8) divisible by 5.
A) 31 B) 15 C) 120. D) 720
9) not divisible by 5?
A) 31 B) 15 C) 192 D) 600.
10) How many numbers of four digits can be formed from the digits 3, 4, 5, 6 ? find the sum of all such numbers.
A) 23, 119988 B) 24, 119988 C) 25 119988 D) 24, 118899
** In how many different ways can the letters of the VALEDICTORY be arranged so that the vowels
11) never separated
A) 31 B)997680. C) 192 D) 720
12) not together
A)38949120. B) 15 C) 192. D) 720
** In how many ways can the letters of the word STRANGE be arranged so that
13) the vowels and never separated
A) 31 B) 15 C) 192. D) 14403600
14) the vowels never come together
A) 31 B) 15 C) 192. D) 14403600
15) How many odd numbers of 6 digits can be formed with the digits 0, 1, 2, 3, 4, 5 each digits occuring only once.
A) 288. B) 730 C) 440 D) none
16) Suppose a licence plate contains three distinct letters followed by four digit with the first digits not being zero. How many different licence plates can be printed ?
A) 140400000. B) 14040000 C) 1404000 D) 140400
** In how many of the permutation of 8 things taken 4 at a time, willo ne particular thing
17) never occurr.
A) 840. B) 8400 C) 84000 D) none
18) always occur.
A) 840 B) 8400 C) 84000 D) n
19) find the number of arrangement of 10 different things taken all together in which two particular things will never come together.
A) 2903040. B) 340 C) 420 D) n
20) how many numbers lying between 100 and 1000 can be formed with the digits 2, 3, 4, 0, 8, 9, one digit not occuring more than once in any number ?
A) 100. B) 210 C) 320 D) none
** There are four bus line between A and B; and three Bus lines between B and C.
21) in how many ways can a man travel by bus from A to C by way of B ?
A) 12. B) 72 C) 144 D) none
22) in how many ways can a man travel round trip by bus from A to C way of B, if he does not want to use a bus line more than once?
A) 12 B) 72. C) 144 D) none
** Find the number of arrangements that can be made out of the letter of the word following:
23) INSTITUTION.
A) 554400. B) 4989600 C) 277200 D) 34650
24) STATISTICS
A) 554400 B) 4989600 C) 277200 D) 34650
25) ENGINEERING
A) 554400 B) 4989600 C) 277200. D) 34650
26) MISSISSIPPI
A) 554400 B) 4989600 C) 277200 D) 34650.
Mg. A- R-4
1) Find the number of ways in which the letters of the word ARRANGE can be arranged so that the two R's do not come together is
A) 554400 B) 4989600 C) 277200 D) 900.
2) In how many ways can the letters of the word MATHEMATICS be arranged so that the vowels come together?
A) 554400 B) 120960 C) 277200 D) 34650
3) How many ways can the letters of the word EXAMINATION be arranged so that all the A's always together ?
A) 907200. B) 4989600 C) 277200 D) 34650
** In how many ways can the letters of the word
4) AGARTALA be arranged ?
A) 1680. B) 120 C) 1560 D) none
5) In how many ways of these will the 4 A's has come together.
A)1680 B) 120. C) 1560 D) none
6) not come together ?
A) 1680 B) 120 C) 1560. D) none
** How many arrangements of the letter of the word COMRADE can be made
7) If the vowels are never separated.
A) 1680 B) 720 C) 1560 D) none
8) if the vowels are to occupy only odd places.
A) 1680 B) 120 C)576 D) none
9) If the relative positions of vowels and constants are not changed?
A) 1680 B) 144. C) 1560 D) none
** in how many ways can the letters of the word ARRANGE
10) be arranged
A) 1260. B) 360 C) 900 D) 120
11) How many of these arrangements are there in a which the two R's come together.
A) 1260 B) 360. C) 900 D) 120
12) the two R's do not come together.
A) 1260 B) 360 C) 900. D) 120
13) the two R's and the two A's come together ?
A) 1260 B) 360 C) 900 D) 120.
14) A man has to post 5 letters and there are four letter boxes in the locality. in how many ways can he post the letters ?
A) 1024. B) 1240 C) 1440 D) none
15) In how many ways can 8 prizes be given away to three boys, when each boy is eligible for all the prizes
A) 6651B) 6561. C) 6750 D) none
16) In how many ways can 8 boys form a ring ?
A) 5040. B) 6561 C) 5600 D) none
17) In how many ways can 6 boys be arranged at a round table so that two particular boys may be together
A) 504 B) 240. C) 3400 D) none
18) in how many ways can 7 people be arranged at a round table so that two particular persons be together?
A) 240. B) 480 C) 720 D) 1440
19) In how many ways can 8 different beads be string on a necklace ?
A) 2500 B) 2520. C) 2530 D) none
** In how many ways can 5 men and 2 ladies be arranged at a round table if the two ladies
20) sit together.
A) 240. B) 480 C) 720 D) none
21) are separated ?
A) 240 B) 480 C) 720 D) none
22) In all the words formed by the letters of the word LAKE be written out as in dictionary, find the rank of the word.
A) 20. B) 117 C) 120 D) 144
23) if the letter of the word WOMEN be permuted and the words formed arranged as in a dictionary, what will be the rank of the word WOMEN?
A) 20 B) 117. C) 120 D) 124
24) how many numbers less than 1000 divisible by 5 can be formed using the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, such that each digit does not occur more than once in each number ?
A) 120 B) 144 C)154. D) none
25) in how many ways 4 prizes-- one is one for recitation, one for sports, one for smartness and one for general proficiency by given away 8 boys ?
A) 8⁴ . B) 4⁸ C) 4095 D) 6904
26) How many 3 digit number are there, with distinct digits, with each digit odd ?
A) 30 b) 60 c) 90 d) 120 e) none
Mg. A- R.5
1) Value of 5!
a) 72 b) 110 c) 120 d) 125 e) none
2) 7!/4!.
a) 210 b) 110 c) 120 d) 125 e) none
3) ⁸P₃.
a) 120 b) 210 c) 276 d) 336 e) none
4) If ⁿP₅ = 20. ⁿP₃ then n is
a) 1 b) 4 c) 6 d) 8 e) none
5) If ⁿ⁺ʳP₂ =110 and ⁿ⁻ʳP₂=20, then n & r is
a) 3,8 b) 3,6 c) 8,3 d) 8,6 e) none
6) 1+1. ¹P₁+ 2.²P₂ + 3.³P₃+...(n-1) ⁿ⁻¹Pₙ₋₁ is
a) n b) 0 c) n! d) ⁿPₙ e) none
7) In a compartment of a train 6 seats are vacant. If 3 passengers get on that compartment, In how many different ways can they sit on the empty seats ?
a) 62 b) 120 c) 144 d) 176 e) none
8) In how many ways 5 Students of the first year and 3 students of 2nd year can be seated in a row so that no two students of 2nd year will sit together?
a) 14400 b) 12200 c) 11100 d) 120 e) n
9) How many different words can be formed with the letters of the word PROBLEM taking 4 letters at a time? (the words may not have any meanings)
a) 840 b) 760 c) 720 d) 240 e) none
10) How many permutation can be found by taking together all the letters of the word PROPORTION?
a)14400 b) 12210 c) 13420 d) 151200 e) none
11) There are four letters and 4 envelopes with definite addresses on it. In how many ways the letters can be put in the correct envelope?
a) 120 b) 24 c) 256 d) 1 e) none
12) There are four letters and 4 envelopes without any addresses on it. In how many ways the letters can be put in the envelopes ?
a) 120 b) 24 c) 256 d) 1 e) none
13) There are 4 letters and four letter boxes. In how many ways the letters can be posted ?
a) 120 b) 24 c) 256 d) 1 e) none
14) How many numbers of three digits can be formed with the digit 1, 2, 3, 4, 5, repetition being allowed ?
a) 125 b) 240 c) 120 d) 1 e) none
15) How many even numbers of three digits can be formed with the digit 1, 2, 3, 4, 5, repetition being allowed ?
a) 20 b) 30 c) 40 d) 50 e) none
16) How many numbers of three digits can be formed with the digit 1, 2, 3, 4, 5, repetition is not allowed ?
a) 125 b) 240 c) 120 d) 1 e) none
17) How many even numbers of three digits can be formed with the digit 1, 2, 3, 4, 5, repetition is not allowed ?
a) 20 b) 30 c) 40 d) 50 e) none
18) How many odd numbers of four significant digits can be formed with the digits 0,1,2,3, 4 where digits can be repeated ?
a) 200 b) 300 c) 400 d) 500 e) none
19) How many odd numbers of four significant digits can be formed with the digits 0,1,2,3, 4 where digits can not be repeated ?
a) 200 b) 300 c) 400 d) 500 e) none
20) How many numbers lying between 1000 to 4000 can be formed with the digit 0, 1, 2,3,4 digit can be repeated ?
a) 300 b) 356 c) 374 d) 420 e) none
21) How many numbers lying between 1000 to 4000 can be formed with the digit 0, 1, 2,3,4 digit can not be repeated
a) 300 b) 356 c) 374 d) 420 e) none
22) There are 6 chairs in a row. In how many ways 6 men out of 10 men can be seated in such a way that two particular men ? never sit in that row
a) 20160 b) 20100 c) 22200 d) 23000 e) none
23) There are 6 chairs in a row. In how many ways 6 men out of 10 men can be seated in such a way that two particular men ? always sit in that row ?
a) 20160 b) 20100 c) 22200 d) 23000 e) none
24) How many 6 digit even numbers can be formed by 2, 3, 5, 3, 4, 5 only ?
a) 40 b) 50 c) 60 d) 70 e) none
25) How many odd numbers of 6 significant digits can be formed with the digits 0,1,2,3,4,5. when no digit been repeated in any number ?
a) 120 b) 210 c) 256 d) 288 e) none
26) How many numbers of 4 digits can be formed from the numbers 1,2,3,4?
a) 24 b) 36 c) 42 d) 60 e) none
27) find the sum of the numbers of 4 digits can be formed from the numbers 1,2,3,4?
a) 60000 b) 66000 c) 66600 d) 66660 e) n
Mg. A- R.6
1) In how many ways can the letters of the word MONDAY be arranged ?
a) 120 b) 320 c) 420 d) 720 e) none
2) how many of them will you begin with M but not end with Y from previous question.
a) 60 b) 72 c) 96 d) 100 e) none
3) How many arrangements can be made with all the letters of the word VENUS such that order of the vowels remains unaltered ?
a) 60 b) 72 c) 96 d) 100 e) none
4) Determine the number of ways in which the letters of the word INTERMEDIATE can be arrange so that the vowels do not come together.
a) 19870 b) 19870720 c) 19807200 d) 198762000 e none
5) Find the rank of the word LAND when its letters are arranged as in dictionary.
a) 10th b) 12th c) 14th d) 16th e) none
6) find the values of 6!
a) 420 b) 360 c) 520 d) 720 e) none
7) Value of 9!/6! is
a) 304 b) 404 c) 504 d) 604 e) none
8) Value of ⁷P₄ is
a) 420 b) 840 c) 1680 d) 1 e) none
9) value of n(n-1). ⁿ⁻²Pₓ₋₂ is
a) ⁿPₓ b) n c) n! d) (n-1)! e) none
10) value of ⁹P₃ + 3. ⁹P₂ is
a) ¹⁰P₃ b) ¹¹P₃ c) ¹²P₃ d) ¹³P₃ e) none
11) If ⁿ⁺¹P₃ = 10 . ⁿ⁻¹P₂ then n is
a) 4 b) 5 c) 4 or 5 d) 4 and 5 e) none
12) If ⁿP₄ : ⁿP₆ = 1: 2, then n is
a) 2 b) 3 c) 2 or 3 d) 2 and 3 e) 6
13) If ²ⁿ⁺¹Pₙ₋₁ : ²ⁿ⁻¹Pₙ = 3: 5 then n is
a) 4 b) 5 c) 4 or 5 d) 4 and 5 e) none
14) If 5. ⁴Pₓ = 6. ⁵Pₓ₋₁ then x is
a) 3 b) 4 c) 5 d) 6 e) none
15) If ⁵Pₓ = ⁶Pₓ₋₁ then x is
a) 2 b) 3 c) 4 d) 5 e) none
16) If ⁹P₅ + 5. ⁹P₄ = ¹⁰Pₓ. Then x is
a) 2 b) 3 c) 4 d) 5 e) none
17) If ⁿ⁺ˣ⁺²P₂ = 132 & ⁿ⁻ˣ⁺³P₂ = 20, then Find the value of n and x.
a) 2,4 b) 4, 2 c) 6,4 d) 4, 6 e) none
18) There are 8 different trains run between Kolkata and Shantiniketan. In how many ways can a man travel from Kolkata to Shantiniketan in one train and return in a different train ?
a) 5 b) 6 c) 56 d) 65 e) none
19) There at 12 stations on a railway line. How many different kinds of tickets of 2nd class must be printed in order that a passenger may go from any one station to any other.
a) 1 b) 2 c) 3 d) 12 e) 123
20) There are 6 ways to enter in a hall. In how many ways can three men enter into that hall through different entrances?
a) 12 b) 21 c) 120 d) 210 e) none
21) The number of permutation of 35 different things taken at a time.
a) 35! b) 13! c) 13!/35! d) 35/13! e) none
22) In how many ways can 7 boys in 3 girls be arrange in a rows so that no two girls will come together ?
a) 144 b) 142 c) 1440 d) 1420 e) none
23) In how many ways the letters of the word CHEMISTRY be arranged taken 4 letters at a time ?
a) 302 b) 3024 c) 403 d) 4023 e) none
24) In how many ways that the letter of the word DELHI be arranged taken all together .
a) 120 b) 1200 c) 12 d) 132 e) none
25) how many numbers of four digits can be formed with the digit 3, 5, 7, 9 when each of the number consists of different digits ?
a) 12 b) 24 c) 36 d) 48 e) none
26) How many different permutations can be made by taking all the letters of the word CONTACT
a) 12 b) 60 c) 126 d) 1260 e) none
27) How many different permutations can be made by taking all the letters of the word COLLEGE
a) 12 b) 60 c) 126 d) 1260 e) none
Mg. A -R.7
1) how many numbers of 6 digits can be formed with the digits of the number 234532 ?
a) 18 b) 180 c) 1800 d) 18000 e) none
2) There are 5 copies of one book, four copies of each of two books, 6 copies of each of three books and one copy of each eight books. In how many ways can all the books be arranged ?
a) 39! b) 39!/5! c) 39!/(5! .6!) d) 39!/(5! . (4!)². (6!)³) e) none
3) In the basis of result of the annual examination three prizes, first, second and third, are given in every class of a school. There are 10 students in a class. In how many ways can the prizes be given in that class?
a) 27 b) 72 c) 720 d) 7200 e) none
4) In how many ways can three prizes - one for recitation, one for sports and one for regular attendance be given to 10 students?
a) 10 b) 100 c) 1000 d) 10000 e) none
5) In how many ways can the result (win, defeat, draw) of 5 successive matches be decided ?
a) 2 b) 3 c) 4 d) 243 e) 234
6) A dice is thrown thrice. How many different outcomes are possible ? In how many way the result of 3 throw will be different ?
a) 216,120 b) 120, 216 c) 210, 120 d) 126,216 e) none
7) Find the number of permutations taking 5 things at a time from 10 different things, each of which can be taken up to 5 times repeatedly.
a)10 b) 100 c) 1000 d) 100000 e) 1
8) How many number of 4 digits can be formed with the digit 1, 2, 3, 4, 5, 6 , 7 where digits can be used more than once?
a) 24 b) 21 c) 240 d) 2401 2400
9) How many number of 5 digits can be formed with the digit 0, 2,5,6, 7, no digits being repeated in any number ?
a) 69 b) 96 c) 699 d) 996 e) 969
10) How many numbers lying between 3000 to 4000 can be formed to with the digit 0, 1, 2, 3, 4 where repetition of digit is allowed ?
a) 12 b) 21 c) 124 d) 214 e? 412
11) how many of them are odd(from Q. No. 10)
a) 40 b) 42 c) 50 d) 500 e) 30
12) How many numbers of 5 digits can be made with at least one repeated digits?
a) 62 b) 627 c) 6278 d) 62784 e) none
13) There are 8 questions in a question paper. In how many ways can a student answer 5 questions where the answers of 2 particular questions never occur.
a) 72 b) 720 c) 7200 d) 72000 e) none
14) There are 8 questions in a question paper. In how many ways can a student answer 5 questions where the answers of 2 particular questions always occur.
a) 24000 b) 2400 c) 240 d) 24 e) 42
15) How many number of 6 digits can be formed using the digits of the number 5, 6, 7,7,2,4 ? How many of this number so formed are even ?
a)180,360 b) 360,180 c) 120, 240 d) 240,120 e) none
16) How many numbers greater than 5000 can be found with the four of the digits 3, 4 , 5, 6, 7 when no digit is repeated ?
a) 27 b) 72 c) 36 d) 63 e) 90
17) if none of the figures 2,4,5,7,8,0 be repeated, how many different numbers of 4 digits can be formed with them?
a) 100 b) 200 c) 300 d) 400 e) 500
18) How many even numbers of 5 digits can be formed with the digit 0,1,2,3,4, each digit not occurring more than once in each number? how many of them are divisible by 4 ?
a) 60,30 b) 30,60 c) 27,72 d) 72,27 e) 32, 48
19) How many positive numbers of 3 digits and divisible by 5 can be formed when the digit of each number are different from each other ?
a) 12 b) 23 c) 36 d) 136 e) 144
20) Find the sum of all the numbers which are formed by the digit 2, 3, 4, 5, taking all together. Each digit does not occur more than once in each number.
a) 3324 b) 9334 c) 93324 d) 34342 e) 12000
21) How many arrangements can made by the letters of the word ORANGE ? How many of these will begin with O ? How many of these will not end with E ?
a) 700,120,600 b) 120,720,600 c) 120,600,720 d) 600,120,720 e) 720,600,120
**22) How many arrangements can be made by taking all the letters of the word TRIANGLE without changing the order of vowels ?
a) 720 b) 620 c) 6720 d) 2670 e) 7206
23) In how many ways can the letters of the word SUNDAY be arranged taken all together where the letters S,N and D are in this order ?
a) 120 b) 250 c) 360 d) 480 e) 720
24) Find the number of ways in which the letters of the word DROUGHT can be arranged so that the vowels are always together.
a) 144 b) 1440 c( 120 d) 1200 e) 14400
25) In how many ways can the letters of the word CONSTANT be arranged so that the two vowels always occur together ?
a) 220 b) 252 c) 2520 d) 5220 e) 2340
26) In how many ways can 37 different books be arranged on a shelf so that two particular books are never together ?
a) 35! b) 36! c) 35!.36 d) 35.36! 36!.35!
27) In how many ways can the letters of the word ALGEBRA be arranged in so that the two A are not together ?
a) 18 b) 180 c) 1800 d) 18000 e) 176
Mg. A- R.8
1) In how many ways can the letters of the word ORION be arranged so that the two consonants do not come together ?
a) 24 b) 42 c) 36 d) 63 e) 72
2) How many arrangements can be made out of the letters of the word COMMITTEE taking all at a time, such that the four vowels do not come together ?
a) 43 b) 430 c) 4300 d) 4320 e) 43200
3) How many different words can be formed taking all the letters of the word BALLOON in which two L will not come together ?
a) 90 b) 900 c) 9000 d) 30 e) 300
4) Find the rank of the word NAME when the letters are arranged as in a dictionary.
a) 20 b) 22 c) 24 d) 26 e) 30
5) Everyday there are 6 periods of a class. In how many ways 5 different subjects can be arrange daily ?
a) 5!/6 b) 5x6! c) 5x6!/2 d) 6! e) none
*** How many different arrangements can be made by the letters of the word ARRANGE so that
6) 2 R never come together
a) 900 b) 600 c) 800 d) 700 e) 500
7) 2A's will be together but two R's do not come together
a) 240 b) 420 c) 402 d) 322 e) 180
8) two A's never come together and also 2 R's never come together ?
a) 600 b) 620 c) 640 d) 660 e) 680
9) In how many ways can the letters of the word STRANGE be arranged so that vowels may occupy only the odd places?
a) 142 b) 144 c) 1420 d) 1440 e) 12440
10) In a railway compartment there are two benches on two sides of it. Five can seat on each of the benches. In how many ways can a group of 6 boys and 4 girls can sit if the girls always sit at the end of the bench ?
a) 1220 b) 1720 c) 17280 d) 17720 e) none
11) How many 5 digited telephone numbers with pairwise distinct digits can be formed ?
A) 5⁹ b) 9⁵ c) 12240 d) 1440 e) none
12) In how many ways can the letters of the word BANANA be arranged?
a) 24 b) 32 c) 60 d) 72 e) 84
13) How many different permutations can be made out of the letter the expression x³y²z⁴ when at full length?
a)124 b) 1240 c) 126 d) 1260 e) 1620
14) if ⁴⁻ˣP₂ = 6, find the value of x.
a) 1 b) 2 c) 3 d) 4 e) 24
15) In how many ways can the 10 coins of 10 paise and five coins of 5 paise can be arranged in a line so that two coins of 5 paise do not come together ?
a) 42 b) 46 c) 146 d) 462 e) 236
16) the number of different messages by 5 signals with 3 dots and two dashes is
a) 20 b) 1000 c) 10 d) 7 e) none
17) At the end of the conference each of the representatives exchange their signature with others. If the total number of Signature is 420, how many representatives were there in the conference ?
a) 12 b) 210 c) 120 d) 2104 e) none