2nd ORDER DIFFERENTION
******** +++++ *********
1) y=log(ax+b) prove
y₂= -a²/(ax+b)²
2) log(x)/x prove x³y₂ - 2log(x)+3=0
3) y= xᵐeⁿˣ show that
y₂= {m(m-1)xᵐ⁻² +
2mnxᵐ⁻¹+n²xᵐ}eⁿˣ
4) x=(1-t)/(1+t) and y= 2t/(1+t) prove y₂=0
5) x=t+1/t and y= t- 1/t show that at t=2 , y₂ =-32/27
6) x²/a² + y²/b²=1 show
y₂=-b⁴/(a²y³)
7) If ax²+2hxy+by²=1 prove that
y₁=-(ax+hy)/(hx+by)
y₂ = (h² -ab)/(hx+by)³
8) y(1-x)=x² show (1-x)y₂- 2y₁ =2
9) If log(√(x-2) + √(x+2))
prove (x²-4)y₂+xy₁=0
10) log(x+√(x²+1)) show
(x²-1)y₂+xy₁=0
11) y=√(x+1) +√(x-1) prove that
(x²-1)y₂+xy₁=y/4
12) y= px +q/x² show
x²y₂+2xy₁ =2y
13) u=v³log(1/v) show
vu₂- 2u₁+3v²=0
14) if x=sin(θ), y=sin(pθ) prove that
(1-x²)y₂ - xy₁+p²y=0
15) if x= a(θ+sin(θ)), y=a(1-cosθ) prove that 4ay₂=sec⁴(θ/2)
16) if cos⁻¹(y/b) = n log(x/n) prove
x²y₂ + xy₁ + n²y =0
17) if y= tanx + sec x
show (1-sinx)²y₂= cosx.
No comments:
Post a Comment