Monday, 15 July 2019

MATH TEST For CA(FOUNDATION)

MATH TEST For CA (FOUNDATION

1) The Number of terms of the A.P
     3,7,11,15.... to be taken so that
     the sum is 406 is
a) 5    b)10   c)12   d)14    e) 20.

2) Sum of all two digit number
     which when divided by 4 yield
     unity as remainder is
a) 1200  b)1210  c)1250  d) none.

3) The first and last terms of an
     A. P are 1 and 11. If the sum of
     its terms is 36, then the number
     of terms is
a)5        b) 6         c) 7            d) 8.

4) The sum of an infinite G. P is 4
     and the sum of the cubes of its
     terms is 92. The common ratio
     of the original G. P is
a) 1/2     b)2/3     c)1/3     d) -1/2.

5) How many terms of the series
     2+6+18+... must be taken to
    make the sum equal to 728 ?
a) 6       b) 7         c)8          d) 9.

6) If 5th, 8th and 11th terms of a
     GP are p,q and s respectively
     then
a) p²=qs b) q²=ps c) s²=pq d) none

7) Total Number of words formed
     by 2 Vowels and 3 consonants
     taken from 4 vowels and 5
     consonants is
a)60       b)120      c)7200   d) none.

8) The Number of arrangements of
     the word DELHI in which E
     precedes I is
a)30      b) 60        c) 120       d)59.

9) If k+5 P k+1 =11(k-1)/2. k+3 P k,
     then the value of k are
a)  7,11   b)6,7   c) 2,11    d)2,6.

INTEGRATION by PARTS

INTEGRATION by PARTS
  +++++                     ++++

1) ∫x cos x dx

2) ∫ log x dx

3) ∫ tan⁻¹x dx

4) ∫ eᵃˣ cos x dx

5)  ∫ xeˣ/(x+1)²dx

6) ∫ xe²ˣ dx

7) ∫ x log x dx 

8) ∫ xsec² x d

9) x sin⁻¹x dx

10) ∫tan⁻¹√(x) dx

11) ∫ x (log x)² dx

12)  ∫ x² (log x)² dx

13)  ∫ sin⁻¹{2x/(1+x²)}   dx

14)  ∫ x² sin x cos x dx

15) log(x + √(x²+a²) dx

16) ∫{xsin⁻¹x/√(1 - x²)} dx

17) ∫x³ sin⁻¹x/(1 - x²)¹/²  dx

18) ∫ sin⁻¹ √(x/(a+x)) dx

19)  ∫eˣ(1+ xlogx)/x    dx

20)  ∫ eˣ(1+sin x)/(1+cosx) dx

21)  ∫eˣ(x² - 1)/(x+1)²   dx

22)  ∫e²ˣ(1+2x+4x²)/(1+2x)²  dx

23)  ∫eˣ{(1 - x)/(1+x²)}²  dx

24)  ∫e³ˣ cos 4x  dx 

25) ∫ eˣ cos 2x cos 3x  dx

26)  ∫sin(logx) dx

27) ∫ xeˣ cos x dx

28) ∫ xⁿ log x dx

29)  ∫ log(x² - x +1) dx

30)  ∫ log(1+x)¹⁺ⁿ Dx

31)  ∫ cos x log(cosec x + cot x) dx

32)  ∫ cosec²x log sec x dx 

33) ∫x cosx cosec²x dx

34)  ∫x⁴(log x)² dx

35)  ∫3ˣ cis 3x dx

36)  ∫2³ˣ sin4x dx

37)  ∫cos³x/e³ˣ  dx

38)  ∫xeˣ cos x dx

39) ∫eˣ(cosx +sinx)dx

40)  ∫ e ⁻²ˣsin 4x sin 3x dx

41)  ∫eˣ(1+tan x) sec x  dx

42)  ∫ eˣ (2+sin 2x)/(1+cos 2x)  dx

43) ∫sec x log(sec x + tan x) dx

44)  ∫e²ˣ(1+sin2x)/(1+cos2x) dx

45)  ∫eˣ(x+4)/(x+13)¹⁰ dx

46)  ∫eˣ[{1+√(1+x²)sin⁻¹x}/   
                                       √(1-x²)]dx

47)  ∫1/(log x)²  + log(log x) dx

48) ∫log(1+cosx) - x tan(x/2)  dx

MATHS FOR W.B.B.S.E(10)

 PRACTICE PAPER (CLASS -X)
------------------------------------------------------

1) If x²,4 and 9 are in Continued Proportion, find x.                               

2) (i) If 7 is the mean of
   5,3,0.5,4.5,b,8.5,9.5 find b.     
(ii) if each observation is decreased in value by 1 unit,what would the new mean be ?                            
3) solve by formula
  (x+3)/(2x+3) =(x+1)/(3x+2).   

4) From the following table, find:
(i) The average wage of a worker, give your answer, correct to the nearest paise.
(ii) The modal class.
Wages in Rs.       No of workers
Below 10.              15
Below 20.              35
Below 30.              60
Below 40.              80
Below 50.              96
Below 60.             127
Below 70.             190
Below 80.             200.              

5)a) prove.√{(1+cos x)/(1-cos x)} =
     Codec x + Cot x.                                           
b) Find mean and mode :
C-I: 58-61 62-64 64-67 67-70 70-73
F:       5        18      42        27       8 

6) In a cricket match Ram took 3 wickets less than twice the number of wickets taken by Anshu. If the product of the number of wickets taken by them is 20, find the number of wickets taken by each.                                                     
7) Evaluate :
{(1+sin30)/cos 30  +
            Cos30/(1+sin30)}² x
               (sin²60/(1-cos²60tan²60) 

8) Marks. Frequency
 1-10       10   From the ogive find:
11-20      40      (I) What% of the
21-30      80        candidate pass
31-40     140    the examination, if 41-50     170     the pass marks
51-60     130            is 40.
61-70     100   (II) What should the
71-80      70   pass marks be, if it
81-90      40    is decided to allow
91-100   20         80% of the candidates to pass ?
From the ogive find:
i) What% of the candidates pass the examination, if the pass marks is 40.
ii) What should the pass marks be, if it is decided to allow 80% of the candidates to pass ?
iii) If scholarship are awarded to the top 15% of the students, what should be the lowest mark to gain a scholarship

9) Calculate the length of the tangent drawn to a circle of diameter 8cm from a point 5cm away from the centre of the circle.

10) If x²,4 and 9 are in Continued Proportion, find the value of x.

11) The volume of a cylinder 14cm long is equal to that of a cube having an edge 11cm. Calculate the radius of the cylinder.

12) The mean of Numbers 6,y,7,x and 14 is 8 Express y in terms of x.

13) Solve: x²-5x-2=0. Give your answer correct to 3 significant figures.

14)(8a+5b)/(8c+5d)=
       (8a-5b)(8c-5d) prove a/b= c/d.

15) find mean median and mode of 12,11,10,12,13,14,13,15,13.

16) The work done by (2x-3) men in (3x+1) days and the work done by (3x+1) men in (x+8) days are in the ratio of 11:15. Find x.

17) prove:  Sinx + cosx =
Sinx/(1-Cotx)  + Cosx/(1-tanx).

18) In an auditorium, seats were arranged in rows and columns. The number of rows was equal to the number of seats in each row. When the number of rows was doubled and the number of seats in each row was reduced by 15, the total number of seats increased by 400
Find a) The Number of rows in the original arrangement.
b) The Number of seats in the auditorium after rearrangement.

19) Draw histogram to find mode
X: 0-20 20-40 40-60 60-80 80-100
F:   3         8        10        6         4.

20) A man standing on the bank of a river observes that the angle of elevation of a tree on the opposite bank is 60°. When he moves 40 m away from the bank, he finds the angle of elevation to be 30°. Find
a) the width of the river.
b) the height of the tree.

21) Find the length of the tangent drawn to a circle of radius 4cm from a point 5cm away from the centre of the circle.

22) If 7 is the mean of 5, 3, 0.5, 4.5,
       b,8.5, 9.5 find b.

23) Solve:
     (x+3)/(2x+3) =(x+1)/(3x+2)

24) A boy standing on a vertical cliff in a jungle observes two rest-houses in line with him on opposite sides deep in the jungle below. If their angles of depression are30° and 60° and the distance between them is 222m, find the height of the cliff.

25) Find mean and mode
X: Bel10  -20  -30 -40 -50 -60 -70
Age: 15   35   60  80  96 127 190

26) If x:y=4:3  find (5x+8y):(6x- 7y)

27) 5,6,8,9,10,11,11,12,13, 13, 14,
  14,15,15,15, 16,1618,19,20. Find
   Mean, Median, Mode.

28) Prove
1/(SinA +CosA) +1/(SinA-CosA)
     = 2SinA)(2Sin²A -1)

29) An aeroplane travelled a distance of 800 km at an average speed of x km/hr. On return journey, the speed was increased by 40 km/hr. Write down an expression for the time taken for:
a) the onward journey
b) the return journey
If the return journey took 40 minutes less than the onward journey, write down an equation in x and find its value.

30) If a/b= c/d prove
(3a- 5b)/(3a+5b)= (3c-5d)/(3c+5d)

31) Two numbers are in the ratio of 7:11. If 15 is added to each Number, the ratio becomes 5:7. Find the numbers.

32) Solve: 3x²-5x=1. Up to 2 decimal.

33) If 2 tan²A -1=0 prove
      Cos3A= 4cos³A - 3cosA

34) SinA(1+tanA) +cosA(1+ cotA)=
  Cosec A + SecA

35) A vertical tower 40m high. A man standing at some distance from the tower knows that the cosine of the angle of elevation is 60° . How far is he standing from the foot of the tower ?

36) Calculate median and mode of
       9,0, 2,8,5,3,5,4,1,5,2,7.

37) Solve y - √(3y -6) =2.

38) If a, b, c are continued Proportion prove
(a²+ b²)/b(a+c)= b(a+c)/(b²+c²).

39) An open cylindrical vessel of internal diameter 49cm and height 64cm stands on a horizontal platform. Inside this is placed a solid metallic right circular cone whose base has a diameter of 10.5cm and whose height is 12cm. Calculate the volume of water required to fill the tank. (π=22/7)

40) The perimeter of a rectangular plot is 180m and its area is 1800m². If the length is x m, Express the breadth in terms of x. Hence, form an Equation in x. Solve the Equation and find the length and the breadth of the rectangle.

41) (1+tan²x)/(1+cot²x)=
                sin²x/cos²x.

42) X:2-4 4-6 6-8 8-10 10-12 12-14
       F: 6     9    16  13       4          2
      Find mode

43) The angle of elevation of a cloud from a point 50m above a lake is 30° and the measure of the angle of depression of its reflection in the lake is 69°, find the height of the cloud.

44) A solid cylinder of radius 14cm and height 21cm is melted down and recast into spheres of radius 3.5cm each. Calculate the number of spheres that can be made.

45) If 4, x,36,y are in Continued Proportion, find x and y.

46) The Mean of 12,18,x,13,19,22 is 16, find x.

47) Solve 3x²+8x+1=0. Give your answer correct to two decimal places.

48) From the top of a building AB, 60 metres high, the angles of depression of the top and bottom of a vertical lamp post CD are observed to be 30° and 60°. Find
a) the horizontal distance between AB and CD.
b) the height of the lamp post CD.

49) SOLVE:  24x² - 334x + 135=0

50) An open cylindrical vessel is made of steel. The internal diameter is 14cm, the internal depth is 20.6cm and the metal is everywhere 4mm thick. Calculate
a) the internal volume
b) the volume of the metal correct to the nearest cm³.

51) John sends his servant to the market to buy oranges worth Rs15. The servant having eaten three oranges on the way. John pays 25 paise per orange more  than the market price. Taking x to be the number of oranges which John receives, form a quadratic equation in x. Hence, find the value of x.

52)X:0-5 5-10 10-15 15-20 20-25
      F:  3     7       15       24       16      
Find Mean correct to 2 decimal.

53) A man is standing on a level ground, observes that a pole 30m away subtends an angle of 50° at his eye, which is 2.0m above the ground level. Calculate the height of the pole. (Give your answer correct to a length of a metre).

MATHS QUESTION PAPER (C.B.S.E)-X

 PRACTICE PAPER (CLASS -X)
------------------------------------------------------
       

1) (i) If 7 is the mean of
         5,3,0.5,4.5,b,8.5,9.5 find b.     
(ii) if each observation is decreased in value by 1 unit,what would the new mean be ?                       
2) solve by formula
  (x+3)/(2x+3) =(x+1)/(3x+2).   

3) From the following table, find:
(i) The average wage of a worker, give your answer, correct to the nearest paise.
(ii) The modal class.
Wages in Rs.       No of workers
Below 10.              15
Below 20.              35
Below 30.              60
Below 40.              80
Below 50.              96
Below 60.             127
Below 70.             190
Below 80.             200.              

4) prove.√{(1+cos x)/(1-cos x)} =
     Cosec x + Cot x.                           

5) Find mean and mode :
C-I: 58-61 62-64 64-67 67-70 70-73
F:.      5        18      42       27       8 

6) In a cricket match Ram took 3 wickets less than twice the number of wickets taken by Anshu. If the product of the number of wickets taken by them is 20, find the number of wickets taken by each.                                                     
7) Evaluate :
{(1+sin30)/cos 30 +
                 Cos30/(1+sin30)}² .
              sin²60/(1-cos²60tan²60) 
8)
Marks. Frequency
 1-10       10  
11-20      40     
21-30      80       
31-40     140   
41-50     170    
51-60     130           
61-70     100  
71-80      70  
81-90      40   
91-100    20        
From the ogive find:
i) What% of the candidates pass the examination, if the pass marks is 40.
ii) What should the pass marks be, if it is decided to allow 80% of the candidates to pass ?
iii)If scholarship are awarded to the top 15% of the students, what should be the lowest mark to gain a scholarship

9) When 7x² -3x+8 is divided by
       x -4, find the remainder.

10) Calculate the length of the tangent drawn to a circle of diameter 8cm from a point 5cm away from the centre of the circle.

11) Find p and q if g(x)=x+2 is a factor of f(x)=x³-px+x+q and f(2)=4

12) The volume of a cylinder 14cm long is equal to that of a cube having an edge 11cm. Calculate the radius of the cylinder.

13) The mean of Numbers 6,y,7,x and 14 is 8 Express y in terms of x.

14) Solve: x²-5x-2=0. Give your answer correct to 3 significant figures.

15) find mean median and mode of 12,11,10,12,13,14,13,15,13.

16) The work done by (2x-3) men in (3x+1) days and the work done by (3x+1) men in (x+8) days are in the ratio of 11:15. Find x.

17) prove:  Sinx + cosx =
Sinx/(1-Cotx)  + Cosx/(1-tanx).

18) In an auditorium, seats were arranged in rows and columns. The number of rows was equal to the number of seats in each row. When the number of rows was doubled and the number of seats in each row was reduced by 15, the total number of seats increased by 400
Find a) The Number of rows in the original arrangement.
b) The Number of seats in the auditorium after rearrangement.

19) find mode
X: 0-20 20-40 40-60 60-80 80-100
F:   3         8        10        6         4.

20) A man standing on the bank of a river observes that the angle of elevation of a tree on the opposite bank is 60°. When he moves 40 m away from the bank, he finds the angle of elevation to be 30°. Find
a) the width of the river.
b) the height of the tree.

21) Find the length of the tangent drawn to a circle of radius 4cm from a point 5cm away from the centre of the circle.

22) If 7 is the mean of 5, 3, 0.5, 4.5,
       b,8.5, 9.5 find b.

23) Solve:
     (x+3)/(2x+3) =(x+1)/(3x+2)

24) A boy standing on a vertical cliff in a jungle observes two rest-houses in line with him on opposite sides deep in the jungle below. If their angles of depression are30° and 60° and the distance between them is 222m, find the height of the cliff.

25) Find mean and mode
X: Bel10  -20  -30 -40 -50 -60 -70
Age: 15   35   60  80  96 127 190

26) 5,6,8,9,10,11,11,12,13, 13, 14,
  14,15,15,15, 16,1618,19,20. Find
   Mean, Median, Mode.

27) Prove
1/(SinA +CosA) +1/(SinA-CosA)=
         2SinA/(2Sin²A -1)

28) An aeroplane travelled a distance of 800 km at an average speed of x km/hr. On return journey, the speed was increased by 40 km/hr. Write down an expression for the time taken for:
a) the onward journey
b) the return journey
If the return journey took 40 minutes less than the onward journey, write down an equation in x and find its value.

29) Solve: 3x²-5x=1. Up to 2 dec.

30) If 2 tan²A -1=0 prove
         Cos3A= 4cos³A - 3cosA

31) SinA(1+tanA) +cosA(1+ cotA)
       =Cosec A + SecA

32) A vertical tower 40m high. A man standing at some distance from the tower knows that the cosine of the angle of elevation is 60° . How far is he standing from the foot of the tower ?

33) A bag contains 4 white and 3 green balls. One ball is drawn at random. Find the probability that it is white.

34) What is the probability that the sum of the faces is not less than 10 when two unbiased dice are thrown

35) The midpoint of AB is P(-2,4). The coordinates of the point A and B are (a,0),(0,b) . Find A, B

36) Calculate median and mode of
       9,0, 2,8,5,3,5,4,1,5,2,7.

37) Solve y - √(3y -6) =2.

38) If -5 is a root of the x²+ kx - 130=0
Find k, Hence find the other root.

39) An open cylindrical vessel of internal diameter 49cm and height 64cm stands on a horizontal platform. Inside this is placed a solid metallic right circular cone whose base has a diameter of 10.5cm and whose height is 12cm. Calculate the volume of water required to fill the tank. (π=22/7)

40) The perimeter of a rectangular plot is 180m and its area is 1800m². If the length is x m, Express the breadth in terms of x. Hence, form an Equation in x. Solve the Equation and find the length and the breadth of the rectangle.

41) Prove (1+tan²x)/(1+cot²x)=
                sin²x/cos²x.

42) X:2-4 4-6 6-8 8-10 10-12 12-14
       F: 6     9    16  13       4          2
      Find mode

43) The angle of elevation of a cloud from a point 50m above a lake is 30° and the measure of the angle of depression of its reflection in the lake is 60°, find the height of the cloud.

44) A solid cylinder of radius 14cm and height 21cm is melted down and recast into spheres of radius 3.5cm each. Calculate the number of spheres that can be made.

45) The Mean of 12,18,x,13,19,22 is 16, find x.

46) Solve 3x²+8x+1=0. Give your answer correct to two decimal places.

47) From the top of a building AB, 60 metres high, the angles of depression of the top and bottom of a vertical lamp post CD are observed to be 30° and 60°. Find
a) the horizontal distance between AB and CD.
b) the height of the lamp post CD.

48) SOLVE:  24x² - 334x + 135=0

49) An open cylindrical vessel is made of steel. The internal diameter is 14cm, the internal depth is 20.6cm and the metal is everywhere 4mm thick. Calculate
a) the internal volume
b) the volume of the metal correct to the nearest cm³.

50) The line joining A(-3,4) and
B(a,9) is divided in the ratio 2:3 at P, the point where the line segment AB intersects y-axis. Find
a) the value of a
b) the coordinates of P.

51) John sends his servant to the market to buy oranges worth Rs15. The servant having eaten three oranges on the way. John pays 25 paise per orange more  than the market price. Taking x to be the number of oranges which John receives, form a quadratic equation in x. Hence, find the value of x.

52)X:0-5 5-10 10-15 15-20 20-25
      F:  3     7       15       24       16      
Find Mean correct to 2 decimal.

53) A man is standing on a level ground, observes that a pole 30m away subtends an angle of 50° at his eye, which is 2.0m above the ground level. Calculate the height of the pole. (Give your answer correct to a length of a metre).

Friday, 5 July 2019

SUM AND PRODUCT (TRIGONOMETRY)

        SUM AND PRODUCT
                  + X + x + x 

FORMULAE USED FOR SUM 

+++++++++++++++++++++

* Sin C+ sin D= 2sin(C+ D)/2. Cos (C- D)/2

* Sin C- sin D= 2cos(C+ D)/2. Sin (C- D)/2

* Cos C+ cos D= 2cos(C+ D)/2. Cos (C- D)/2

* Cos C- cos D= -2sin(C+ D)/2. Sin (C- D)/2


                 EXERCISE-1

                **************

1) Express as a product:

A) sin 50+ sin 40.        2sin 45 cos 5

B) cos 36- cos 76.     2sin 56 sin 20

C) sin 75 - sin25.      2 cos50 sin25 

D) sin36 + sin 54.    

E) cos85 - cos 15.

F) sin110+ cos40.

G) cos 2x - sin 2x.

H) sin 5x+ sin 3x.        2 sin 4x cosx

I) cos 7x - cos 4x.    -2sin 11x/2 sin 3x/2

J) sin 7x- sinx.          2cos 4x sin 3x

K) cos105+ cos35.   2cos70 cos35 

L) 1+ 2 sin20.              4 sin25 cos 5



2) PROVE:

A) sin 43+sin 17= cos 13

B) cos 25 - cos 35 = sin 5

C) sin 2x + sin 4x = 2sin 3x cos x

D) sin 8x- sin4x =2cos6x sin 2x

E) cos 6x+ cos 4x= 2cos 5x cos x 

F) cos 3x/2 - cos 9x/2= 2 sin3x sin 3x/2. 

G) sin 42 - sin18= √3 sin 12

H) sin 10 + sin50 - sin 70 = 0

I) cos 40 +cos 80+ cos 160= 0 

J) cos 10 + cos 110+ cos130= 0

K) sin 20 + sin40 - sin 80 = 0

L) sin 105 + cos105 + cosπ/4 = √2 

M) cos 55 + cos65 + cos175 = 0

N) cos(120+α)+cosα+cos(120-α) =0

O) sinα +sin(α-120)+sin(α+120) =0

P) sinx+sin2x+sin3x=sin2x(1+2 cosx).

Q) cosx + cos2x+cos3x=cos2x(1+ 2cosx).

R) cos20+cos100 +cos220 = 0

S) cos20+cos220 +cos260 = 0

T) √2 cos20= sin65+ cos65 

U) cos10+cos20 +cos40+ cos50 = √3(cos10+cos20).

V) sin25+sin35+sin45= 2 cos 20 cos25.

W) sin10+ sin20 + sin40 + sin 50= sin 70 + sin80.

X) sin19+ sin41 + sin83 = sin 23 + sin37+ sin79.

Y) cos306+ cos234 + cos162+ cos 18= 0


3) PROVE:

A) (Sin5x+ sin3x)/(cos3x- cos5x)= cotx

B) (cos10 - sin10)/(cos10+sin10)= tan35

C) (cosx+cosy)/(cosy -cosx) =  cot (x+y)/2 cot (x-y)/2

D)  (sin7α+ sin9α)/(cos7α - cos9α) = cotα

E) (sin42+cos12)/(cos42+sin12)= √3 

F) (sin2A- sin2B)/+sin2A + sin2B)= 
Tan(A- B)/ tan(A- B) 

G) (sinA+ sin3A)/(cosA + cos3A)= Tan 2A 

H) (sin4x-sin2x)/(cos4x- cos2x) = - cot 3x

I) (sin75- sin15)/(cos75+ cos15) = 1/√3

J) 1+ (cos 465+ cos 165)/(sin 105 + sin15)= 0

K)  (sin4α +sin6α +sin5α)/(cos4α +cos6α +cos5α) = tan 5α

L) {cos(3α-2β) - cos(3α+2β)} /{sin(3α+2β) - sin(3α -2β)} = tan3α

M) (sin2x+ sin3x+ Sin5x)/(cosx + cos³x + cos3x)= tan 3x.

N) (cosx +cos3x+cos5x+cos7x )/ (sinx+sin3x+sin5x +sin7x) = cot4x 

O) (sin2α + sin5α -sinα)/(cos2α + cos5α +cosα) = tan 2α

P) (cos7α+cos3α-cos5α-cosα)/ (sin7α-sin3α-sin5α+sinα) =cot2α

Q) (sinα+sin2α+sin4α+cos5α)/ (cosα+cos2α+cos4α+cos5α)=tan3α

R) sinA+sinB+sinC- sin(A+B+C)= 4sin(A+B)/2. sin(B+C)/2. sin(C+A)/2.

S) (cos7α+cos5α+cos3α+cosα)/ (sin7α+sin5α + sin3α+sinα) = cot 4α

T) (Cos3A+ 2cos5A+ cos7A)/(cosA + 2 cos3A + cos 5A)= cos2A - sin2A tan3A

U) sin(α+β) - 2sinα+sin(α-β)}/ {cos(α+β) - 2cosα +cos(α-β)=tanα

V) tan 55 - tan 35= 2 tan 20

W) tan 70= tan 20+ 2 tan 40+ 4 tan 10

X) cos85+ cos 35= 1/√2 (cos 20+ sin20)

                EXERCISE-2

               xxxxxxxxxx 

FORMULAE USED

xxxxxxxxxxxxxxxxx 

* 2 sinA cosB= sin(A+B)+ sin(A-B)

* 2 sinA sinB= cos(A-B)- scos(A+B)

* 2 cosA cosB= cos(A+B)+ cos(A-B)

* 2 cosA sinB= sin(A+B)- sin(A-B) 

XxxxxxxxxxxxxxxxxxxxxxxxxxxxxX 

1) Express as sum or difference:

A) 2 sin36 cos54.

B) sin 40 sin60 

C) cos(π+x) cos(π-x).

D) sin(3π/4 +x) sin(3π/4-x).

E) sin 50 cos 30.        1/2(sin80 + sin20)

F) cos40 cos 20.    1/2(cos60+ cos20)

G) sin55 sin40.     1/2(cos95-cos15)

H) 2 sin 7x cos 3x.     Sin10x+ sin4x

I) sin 60 sin30.    1/2(cos30-cos90)


2) PROVE:

A) 2sin2x cos 3x = sin 5x- sin x

B) sin3α/2 cosα/2 = ½ (sin2α + sinα)

C) 4 sin80 sin40= 2(cos40- cos120)

D) sin(30+α) cos(30-α) =½(√3/2 +sin2α)

E) Cos20. Cos40. Cos80= 1/8

F) cos40 cos100 cos160=⅛

G) Sin 20 sin 40 sin 80 =√3/8 

H) sin20 sin40 sin60 sin80 =√3/8

I) sin10 sin30 sin50 sin70 = 1/16

J) sin36 sin72 sin108 sin144=5/16

K) Sin20 sin 40 sin 60 sin 80=3/16

L) Cos20 cos 40 cos 60 cos 80= 1/16

M) Sin π/16 sin3π/16 sin 5π/16 sin 7π/16=√2

N) 4 sin x sin(60-x) sin(60+x)= sin 3x

O) Tan20 tan 40 tan 80=√3

P) Tan20 tan 40 tan 60 tan 80=3

Q) Cot 20 cot 40 cot 60 cot 80= 1/3


                  EXERCISE-3

                    ***********

1) PROVE:

A) (cosα - cosβ)²+(sinα - sinβ)²=  4sin²(α - β)/2

B) (cosα+cosβ)²+(sinα + sinβ)²
    = 4cos²(α - β)/2

C) sin 3α cos α + cos 4α sin2α)= sin5α cosα 

D) sin 3α cos α + cos 4α sin 2α)= sin 5α + cos α.

E) sin α sin(α + 2x) - sin x sin(x+2α) = sin(α+x) sin(α - x).

F) cos 10 cos 20+ sin 45 cos 145 + sin 55 cos 245= 0

G) cos 55 cos 65+ cos 65 cos 175 + cos 175 cos 55 = 0

H) sin 10 sin 50+ sin 50 sin 250 + sin 250 sin 10= -3/4.

I) (sinA sin2A + sin2A sin5A)/(sinA cos2A + sin2A cos5A)= tan 4A

J) (sin10 sin20 + sin20 sin50)/(sin10 cos20 + sin20 cos50) = tan 40

K) (Sin 11x sin x + sin 7x sin 3x)/(cos 11x sin x + cos 7x sin 3x)= tan 8x.

L) cos2θ cos(θ/2)-cos3θ cos(9θ/2) = sin5θ sin(5θ/2)

M) 1+16cos12 cos24 cos48 cos96 = 0

N) 2cos(π/13) cos(9π/13) + cos(3π/13) +cos(5π/13)= 0

O) sin(11θ/4)sin(θ/4) +sin(7θ/4) sin(3θ/4) = sin2θ sinθ

P) cos(120+θ) cos(120-θ) + cos(120+θ) cosθ+cosθcos(120-θ) = - ¾ 

Q) sec(π/4 +x) sec(π/4 -x)=2 sec2x 

R) tan(60+x) tan(60-x)= (2cos 2x+1)/(2cos 2x -1).



             EXERCISE -4

          *****************

1) If sinA= n sin (A+2B), Prove, tan(A+ B)= {(1+n)/(1-n)}. Tan A

2) if a cos (x+y)= b cos(x- y), show that (a +b)tan x = (a-b) cot y.

3) If α is devided into two parts x and y such that cos x :cos y = 1:k prove Tan(x-y)/2 ={(k-1)/(k+1)}cot α/2

4) If Cos(A+2B) = m CosA show cotB= (1+m)/(1-m) tan (A+B) 

5) b sinA= a sin(A+2B), show (b+a) tanB= (b-a) tan(A+B).

6) If Sin A=mSin B prove Tan(A-B)/2= (m-1)/(m+1) tan (A+B)/2 

7) x cosA+ y sinA= x cosB + y sinB, show y= x tan(A+B)/2.

8) If sin2A= 4 sin2B, show 5 tan(A-B) = 3 tan(A-B) 

9) If cosx= n cos(x+2y), show tan(x+y)= {(n-1)/(n+1)} cot y 

10) If sinA= 1/√2 and sinB= 1/√3, find the value of tan(A+B)/2 cot(A+B)/2.                             5 +2√6

11) If CosA+ CosB=⅓, SinA+SinB=¼ then Prove tan(A+B)/2 = ¾.

12) If cosA + cosB= cos 3π/7 and sinA + sinB= sin 3π/7, then find the value of cos²(A-- B)/2.               1/4 

13) If sinx + sinB= 2/3 & cosx + cosy = 5/6, show tan(x+y)/2= 4/5.

14) If cosx/cosy= a/b, show a tanx + b tan y= (a+b) tan(x+y)/2.

15) If A,B,C be in A.P, show (sinA - sinC)/(cosC - cos A)= cot B.

16) If Sinθ + Sinα =x & cos θ+ cos α= y prove :

a) tan (Θ+α)/2 = x/y

b) cos(θ - α)/2= 1/2√(x²+y²)

c) cos(θ+α)/2 = y/√(x²+y²)

d) tan(θ-α)/2 = √{(4 - x²-y²)/(x²+y²)}


17) If sinα - sinβ= x, cosα - cosβ = y. Prove

a)cot(α+β)/2= -x/y.

b) sin(α - β)/2 = √(x²+y²)/2

c) sin(α+ β)/2 = y/√(x²+y²)

d) cot(α - β)/2=√{(4- x² -y²)/(x²+y²)}


18) If CosecA + SecA= CosecB+secB. Show TanA+ TanB= Cot(A+B)/2

19) If secA - cosecA= cosecB - secB then show tanA tanB= tan(A+B)/2

20) If A+B=C, prove cos²A +cos²B+ cos²C =1+2cosA cosB cosC 

21) If α+β+θ=π then prove sin²α+sin²β+sin²θ= 2sinαsinβsinθ.

22) If A+B+C=90 shows Sin²A+sin²B+sin²C=1-2sinA sinB sinC

23) If A+B+C=π a8 sin(A+ C/2)= n sinC/2, show tanA/2 tanB/2={(n-1)/(n+1)}.

24)** {(cosα+cosβ)/(sinα- sinβ)}ⁿ +{(sinα+sinβ)/(cosα - cosβ)}ⁿ = 2cotⁿ(α-β)/2 or zero, according as n is even or odd.










MISCELLANEOUS

1) Prove: 

A) (1+ Cos π/8)(1+cos3π/8) (1+cos5π/8)(1+cos7π/8 = ⅛

B) sinA + sinB + sin C - sin(A+B+C) = 4 sin (A+B)/2 . Sin(B+C)/2. Sin(C+A)/2.

C) sin2A + sin2B + sin2C - sin2(A+B+C) = 4 sin (B+C). Sin(A+C). Sin(A+B)

D) cosA + cosB + cos(A+B+C) = 4. Cos (A+B)/2 . Cos(B+C)/2. Cos(C+A)/2.

E) 4 sinx siny sin z= sin(x+y-z)+ sin(y+z-x)+ sin(z+x-y) - sin(x+y+z)

F) cosA + cos3A+ cos7A+ cos9A= 4 cosA cos3A cos5A.


2) If tan(A-B)= sin2B/(5 - cos2B), find the value of tanA/tanB.          3/2