A) DEFINITION
A matrix is defined as a rectangular arrangement of numbers in rows and columns. e.g.,
A = 2 √3 4
1 √2 0
B = 2 3 1 ≺ row 1
5 6 0 ≺ row 2
0 9 4 ≺ row 3
| | |
col. 1 col.2 col.3
NOTE:
1) A matrix is always denoted by a capital letters, like A, B, C, ...etc.
2) The number which are listed within brackets are known as
" Elements or Entries or Members" of the matrix.
3) Generally [ ] or ( ) brackets are used to donate a matrix.
4) The horizontal lines are known as " ROWS " and vertical lines are known as " COLUMNS ". Thus the matrix A has two rows and three columns. We say to be a rectangular (since, the number of rows is different from number of columns) matrix of order 2x3 and B to be a square matrix or order 3x3 (since, the number of rows is same as the number of columns).
• In other words we can say A matrix having m rows and n columns is called a matrix of order m x n (read as m by n).
a₁₁ a₁₂ ........ a₁ⱼ ....... a₁ₙ
a₂₁ a₂₂ ....... a₂ⱼ ....... a₂ₙ
.... .... ....... .... ....... ....
aᵢ₁ aᵢ₂ ....... aᵢⱼ ...... aᵢₙ
... ... ...... ... ...... ...
aᵤ₁ aᵤ₂ ...... aᵤⱼ ...... aᵤₙ
OR
a₁₁ a₁₂ ........ a₁ⱼ ....... a₁ₙ
a₂₁ a₂₂ ....... a₂ⱼ ....... a₂ₙ
.... .... ....... .... ....... ....
aᵢ₁ aᵢ₂ ....... aᵢⱼ ...... aᵢₙ
... ... ...... ... ...... ...
aᵤ₁ aᵤ₂ ...... aᵤⱼ ...... aᵤₙ
The elements aᵢⱼ occurs in the ith row and jth column is called
(i j)-th element. For example, a₃₂ is the element of 3rd row and 2nd column.
The matrix written above is also denoted by the symbol (aᵢⱼ)ᵤₓₙ or [aᵢⱼ]ᵤₓₙ where i= 1, 2, 3, ....., m and j= 1, 2, 3, ....,n.
Different matrices are symbolised different capital letters as A, B, C etc.
REAL METRIX : if the elements of a matrix be all real then the matrix is called a real matrix.
B) SOME DEFINITION OF METRIX:
a) ROW MATRIX: A matrix whose elements are arranged in one row only is called a row matrix.
For examples, [a₁ a₂ a₃ ........aₙ] is a row matrix. Clearly, the order of the matrix is 1 x n.
b) COLUMN MATRIX: A matrix whose elements are arranged in one Column only is called a Column matrix. For example,
b₁
b₂
b₃
.
.
.
bᵤ is a column matrix. Clearly, the order of the matrix is m x 1.
c) NULL or ZERO MATRIX : A matrix whose every element is zero is called a null matrix or zero matrix. A null matrix is generally denoted by O. A null matrix of order u x n is denoted by Oᵤ ₓₙ
Example ) ( 0 0 0)
or 0 0 0 0 0
0 0 or 0 0 0
0 0 0
are all null matrix
d) SQUARE MATRIX: A matrix whose number of rows and columns are equal is called a square matrix. If number of rows = number of columns= n, then the matrix is called a square matrix of order n (or n x n square matrix). For example, a₁ b₁ c₁
a₂ b₂ c₂
a₃ b₃ c₃
is a square matrix of order 3 (or third order matrix).
DIAGONAL ELEMENTS: If A =[aᵢⱼ] be a square matrix, then elements where I = j are called diagonal elements and the straight line on which they lie is called the Principal diagonal or simply diagonal of the square matrix. For example, for the square matrix
1 3 5
4 6 8
2 7 4
is the diagonal elements are 1, 6, 4.
d) DIAGONAL MATRIX: A square matrix whose all the elements Except the elements in principal diagonal are zero is called a diagonal matrix. For example
a₁ 0 0
0 b₂ 0
0 0 c₃
is a diagonal matrix of order 3. And principal diagonal is a₁ b₂ c₃
2 0
0 3
is a diagonal matrix of order 2. And principal diagonal is 2 3.
NOTE:
1) A square matrix has two diagonals. The diagonal extending from left-hand top corner to right hand bottom corner is known as PRINCIPAL or MAIN or LEADING diagonal.
2) Atleast one element of the principal diagonal must be non-zero.
e) SCALAR MATRIX: A diagonal matrix whose elements on the principal diagonal are non-zero and all equal to each others is called scalar matrix for example
1) -2 0 2) 7 0 0
0 -2 0 7 0
0 0 7
f) UNIT or IDENTITY MATRIX: A scalar matrix whose elements on the principal diagonal are all 1 is called a unit or identify matrix. An unit matrix is generally denoted by I. Sometimes the order of the unit matrix is also written as suffix of I. For example. I₂ and I₃ are unit metrices of order 2 and 3 where
I₂ = 1 0 and I₃= 1 0 0
0 1 0 1 0
0 0 1
NOTE:
1) All the diagonal elements of the unit matrix should be + 1 only.
2) The diagonal matrix, scalar matrix and unit matrix all the square matrices i.e., in each of them the number of rows= the number of columns.
g) UPPER TRIANGULAR MATRIX:
This is a square matrix whose each element below the princpal diagonal is zero. Example
1) 2 3 2) 2 4 0 3) 2 0 0
0 1 0 3 1 0 0 1
0 0 5 0 0 5
h) LOWER TRIANGULAR MATRIX:
This is a square matrix whose elements above the principle diagonal is zero. Example.
1) 2 0 2) 2 0 0 3) 0 0 0
1 3 3 1 0 2 0 0
4 0 1 3 1 0
****************"*"*********""""***********
* ADDITION OF TWO MATRICES *
Two matrices can be added or subtracted only if they are of the same order and this is done by adding or subtracting the corresponding elements of two matrices.
PROPERTIES OF MATRIX ADDITION:
1) A+ B= B + A
2) A +(B+C)= (A+B)+C
3) A + O= O +A = A
Where A, B, C are the matrices of the same order and O is the null matrix of the same order.
Exercise - A1) If A= 2 5 and B= 1 -3
-3 7 2 5
Find A+ B. 3 2
-1 12
2) If A= 3 -6 & B= 1 -3
9 3 3 0
find 2A+ B. 7 -15
21 6
3) If A= 2 -3 and B= -1 6
4 5 3 2
Find 2A+ 5B. -1 24
23 20
4) If M= 2 0 and N= 2 0
1 2 -1 2
Find M+ 2N. 6 0
-1 6
5) If A= 2 0 and B= 1 2
-3 1 3 1
Find 3A+ 4B. 10 8
3 7
6) If A= 1 4 and B= -4 -1
2 3 -3 -2
Find 2A+ B. -2 7
1 4
7) If A= 2 4 and B= 1 3
3 2 -2 5
Find 2A+ 3B. 7 17
0 19
8) If A = -3 5 and B= 2 -3
-9 11 6 7
find 2A + 3B. 0 1
0 1
9) If A= -3 2 1 & B= 3 5 1
1 -4 7 -1 4 -2 find A+ B. 0 7 2
0 0 5
10) If A= diag(1 -1 2) and B= diag(2 3 -1), find
A) A+ B. diag (3 2 1)
B) 3A + 4B. diag(11 9 2)
11) If M= 2 0 and N= 2 0
1 2 -1 2 find
M +N. 4 0
0 4
Exercise - B
1) If A= 3 -1 7 & B= 2 -2 -1
0 1 2 1 2 3
Find A+ B. 5 -3 6
1 3 5
2) If A= 0 2 3 & B= 7 6 3
2 1 4 1 4 5
Find 2A+ 3B. 21 22 15
7 14 23
3) 3 -1 0 0 = 3 -1
If A= 2 1 & B= 0 0 2 1
4 -2 0 0 4 -2
Find A+ B. 3 -1
2 1
4 -2
4) if A = 1 2 3 B= 4 -2 -2
0 3 - 5 6 2 -1
1 0 0 1 -2 3
find 2A + 3B. 14 -2 0
18 12 -13
5 -6 9
5) 1 2 3 3 -1 3
A= 2 3 1 & B = -1 0 2
Find 2A + 3B. 5 1 15
1 6 5
6) A= 2 3 4 & B= 3 0 5
0 4 6 5 3 2
5 8 9 0 4 7 find 3A - 2B. 0 9 2
-10 6 14
15 16 13
7) A=1 -3 2 B= 2 -1 -1 C= -3 4 -1
2 0 2 1 0 -1 -3 0 -1
Find 2A + 3B+ C
8) If A=1 3 5 and B= 4 2 3
0 4 1 1 3 -7
Verify 2(A+B)= 2A +2B
* SUBSTRACTION OF MATRICES *
If A and B are metrices of the same order, then A - B = A+ (-1)B. Hence if A= [aᵢⱼ]ᵤₓᵥ and B= [bᵢⱼ]ᵤₓᵥ then
A - B = [aᵢⱼ]ᵤₓᵥ + (-1) [bᵢⱼ]ᵤₓᵥ
= [aᵢⱼ - bᵢⱼ]ᵤₓᵥ
Thus A - B is a matrix of the same order of matrix A and B, whose elements are the members obtained from substracting the corresponding elements of B from A. for example, if
A= x₁ y₁ z₁ a₁ b₁ c₁
x₂ y₂ z₂ and B= a₂ b₂ c₂
x₃ y₃ z₃ a₃ b₃ c₃
then,
A - B= x₁- a₁ y₁-b₁ z₁ - c₁
x₂ -a₂ y₂- b₂ z₂ -c₂
x₃ -a₃ y₃ -b₃ z₃ -c₃
NOTE:
1) Since - A= (-1)A = (-1) [aᵢⱼ]ᵤₓᵥ i.e., all the elements of A with sign changed, hence - A is called the negative matrix of matrix A.
Again, since A +(- A)= (- A)+ A=0, so - A is called the additive inverse of A.
2) If A + B = A + C, or
B + A = C + A, then B = C, where A, B, C are matrices of same order.
Exercise - C
1) If A = 2 4 and B = 3 6
5 6 5 4
Find A- B. -1 -2
0 2
2) If A= 3 -6 & B= 1 -3
9 3 3 0
find A-2 B. 1 0
3 4
3) If M= 2 0 and N= 2 0
1 2 -1 2
Find:
A) 2M - 3N. -2 0
5 -2
B) 2(M - 3N). 16 0
8 -8
C) 2M - N. 2 0
3 2
D) 7M - 5N. 4 0
12 4
4) If A= 7 6 3 and B = 0 2 3
1 4 5 2 1 4
Find 3B - A. 21 16 6
1 11 11
5) if A= 1 2 & B= -2 3
-2 3 1 2
find 7A - 5B. 17 -1
-19 11
6) If A= diag(2 -5 9), B= diag(1 1 -4) and C=(-6 3 4) find
i) A- 2B. diag(0 -7 17)
ii) B+C - 2A. diag(-9 14 -18)
iii) 2A + 3B-5C. diag(37 -22 -14)
Exercise - D
1) If A = 2 4 and B = 3 6
5 6 5 4
find X if 3A + 4B - 2X= 0. 9 18
35/2 22
2) If A= 5 -4 & B= 3 -2
-11 6 -1 4 find the Matrix X when A+ 2X = 3B. 2 -1
4 3
3) If B= -2 2 0 C= 2 0 -2
3 1 4 7 1 6 find the value of A as the relation 2A- 3B + 5C = 0. -8 3 5
-13 -1 -9
4) If A= diag(2 -5 9), B= diag (1 1 -4) and C= diag (-6 3 4) find
A) A- 2B. diag(0 -7 17)
B) B+ C - 2A. diag(-9 14 -18)
C) 2A + 3B - 5C. diag(37 -22 -14)
5) if A= 1 2 B= -2 3 C= 0 3
-2 3 1 2 2 -1
find
i) A + 2B - 3C. -3 -1
-6 10
ii) 3A - 4B + C. 11 0
-6 -1
iii) A - 3B + 2C. 7 -1
-1 -5
6) Let A= -1 0 2 B=0 -2 5 & C= 1 -5 2
3 1 4 1 -3 1 6 0 -4 Compute 2A - 3B + 4C. 2 -14 -3
27 11 -11
7) if A = 1 2 3 & B= 4 -2 -2
0 3 - 5 6 2 -1
1 0 0 1 -2 3
a) If 3A + X = B find X. 1 -8 -11
6 -7 14
0 -2 3
b) if X - 3B = 2A find X. 14 -2 0
18 12 -13
5 -6 9
8) If A - 2B= -7 7 & A - 3B= -11 9
4 -8 4 -13 find the Matrix A and B.
** EQUALITY OF TWO MATRICES:
Two matrices are said to be equal if
1) they are of same orders.
2) each element of one is equal to the corresponding element of the other. For example, if A and B are matrices both of order 2x 3 and
A = a b c and B = p q r
d e f x y z
Then A= B implies a= p, b= q, c= r, d= x, e= y, and f= z.
EXERCISE-E
Type-2 1) x 7 + 6 -7 = 20 7
9 y-5 4 5 22 15
find x and y. 14, 22
2) a 3 + 2 1 - 1 b = 5 0
4 2 1 -2 -2 c 7 3
find a, b, c. 4, -1,3
3) If A= 2a - b 4 = 2 4
3 a+2b 3 6 find the value of a and b. 2,2
4) If x+y 2 = 6 2
5 xy 5 8 find the value of x and y. 2, 4 or 4, 2
5) If A=2 a B = -2 3 C = c 9
-3 5 7 b -1 -11
and 5A + 2B = C find a, b, c. 6/5, -18,6
6) If A= x y B= 1 -1 & C= 3 5
z t 0 2 4 6 with the relation 2A+ 3B = 5C then find the value of x,y,z and t. 6,14,10,12
7) x -y y+ z = t - x t - z
2+ t 3+ t z+ y 6 find x,y,z,t. 5,7,-2,3
8) y+ z x +z = 9 - t 8- t
7 - t 6 - z x+ y x+ y find the value of x,y z. 1,2,3,4
9) x - y 2z+ w = 5 3
2x- y 2x+ w 12 15 find the value of x, y, z, w. 7,2,1,1
10) 2x+1 3y = x+3 y²+2
0 y²-5y 0 -6 find the value of x and y. 2,2
11) x+3 z+4 2y-7 = 0 6 3y-2
4x+6 a-1 0 2x -3 2c-2
b-3 3b z+ 2c 2b+4 -21 0 find the value of a, b, c, x, y z. -2, -7, -1, -3, -5, 2
12) If A= 2 0 -4 B= 1 -2 0 C= 2
1 4 2 2 -1 3 0
1 Find the Matrix C with the relation (3A - 2B)C = D. -4
-2
13) A= 1 2 3 B= 1 0 2 C= 4 4 10
-1 -3 2 3 4 5 4 2 14 find the value of k if 2A+ kB=C. 2
Type- 2
14) If X + Y = 7 0 and X - Y= 4 -1
2 3 5 -2
find metrices X And Y.
11/2 -1/2 3/2 1/2
7/2 1/2 -3/2 5/2
15) A+ B= 2 2 2A+ 3B= 5 4
0 2 and 0 5 then find the Matrix A and B.
1 2 1 0
0 1 0 1
16) If A+B= 1 2 0 A - B= 3 0 2
3 5 4 1 1 0
Find the metrices A and B
2 1 1 -1 1 -1
2 3 2 1 2 2
17) If A+B= 2 2 and A - B= 5 4
0 2 0 5
Find the metrices A and B.
7/2 3 -3/2 -1
0 7 0 -3/2
18) If 2P + Q= 4 5 & P + 2Q= 2 4
3 8 3 1 Then find the value of P+ Q. 2 3
2 3
19) If 2A+ B= 4 4 7 & A- 2B = -3 2 1
7 3 4 1 -1 2 find the Matrix A and B
1 2 3 2 0 1
3 1 2 1 1 0
20) If 2x -y= 6 -6 0 & x +2y =3 2 5
-4 2 1 -2 1 -7 find the Matrix x and y. 3 -2 1 0 2 2
-2 1 -2 0 0 -3
21) If 2A+B= 4 7 16
7 -3 12
. 13 6 2
And 3B - A= 5 0 13
7 -2 8
11 4 -1
Find metrices A and B
2 1 6 1 3 5
3 -1 4 2 -1 4
5 2 0 4 2 1
22) If A + 2B = 1 2 0
6 -3 3
-5 3 1
and 2A - B= 2 -1 5
2 -1 6
0 1 2
Find metrices A and B.
0 5/3 -5/3 1 1/3 10/4
10/3 -5/3 0 -2/3 1/3 3
-10/3 5/3 0 5/4 -1/3 1
23) X - y = 1 1 0 and x+ y= 3 5 1
1 1 0 -1 1 4
1 0 0 11 8 9 find Matrix x and y. 2 3 1 1 2 0
0 1 2 -1 0 2
6 4 0 5 4 0
MULTIPLICATION OF A MATRIX BY A SCALAR :
Multiplying a matrix by a real number is called multiplication of a matrix by a scalar.
If k is a real number (scalar) and A be a matrix, then their product kA is defined by the matrix of the same order as A, whose elements at each position is k times that of A. i.e., if A = [aᵢⱼ)ᵤₓᵥ, thenkA =ln([kij]ᵤₓᵥ
PROPERTIES OF MULTIPLICATION OF A MATRIX BY A SCALAR:
Let p,q are any two scalar and A and B are metrices of the same order then
PROP 1). (p+q)A= pA + qA
PROP 2) p(A+B)= pA + pB.
PROP 3) p(qA) = (p q)A or
(p q)A = p(qA)
Exercise - F1) If A = 1 3 B = 4 -5
2 -2 3 -1 Find
i) AB. 13 -8
2 -12
ii) BA. -6 22
1 11
iii) A². 7 -3
-2 10
iv) (AB)². 153 8
2 128
v) A² - B². 6 12
-11 24
vi) A² - 2B. -1 7
-8 12
2) If A = 1 2 B= 3 4 C= -1 0
5 -4 0 2 2 -2
find i) ABC
ii) (A+B)C
iii) A² - BC
iv) AC + B²
v) (A+ B) (A - B)
vi) AC + B²
3) If A= 3 5 & B= 1 6
1 -2 -4 3 show AB≠ BA
4) A= 2 0 & B= 3 0
3 1 3 2 show AB = BA
5) A= 2 1 & B= 1 -2
1 2 -1 2 show AB = B
6) If A = 1 2 3 and B = 6 -2 -3
1 3 3 -1 1 0
-1 0 1 1 2 4
evaluate AB , BA
7) If A = 1 -2 1
-1 2 -1 show A² = A
-2 4 -2
8) If A= 1 -1 and B= 1 1
-1 1 1 1
prove AB=0.
9) If A = 1 2 1 & B= 1 4 0
1 -1 1 -1 2 2
2 3 1 0 0 2
Find AB - 2B
10) If A= 3 2. 5 B= 1 2 & C= 7 - 8
2 -4 0 2 -1 5 Find AB - C
11) If A= 0 1 2 B = 2 1 3
1 2 3 -1 0 1
3 1 1 3 -1 4
Verify AB≠ BA
12) If A = 1 2 3 and B= 6 -2 -3
1 3 3 -1 1 0
1 2 4 -1 0 1
Check AB = BA
13) If A=2 -3 -5 and B= -1 3 5
-2 4 5 1 -3 -5
1 -3 -4 -1 3 5
Prove AB≠BA
14) If A= 1 & B= 1 2 3 find BA
2
3
15) If A is 3 -2 0 & B= 2 find BA
0
3
16) If A= 2 3 -1 B= 1 & C= 1 -2
3 0 2 1
2
Verify A(BC)≠ (AB)C
17) if A= 0 1 0 & B = 0 0 1
0 0 1 1 0 0
1 0 0 0 1 0
verify i) A²= B ii) B² = A
18) If A= 2 -1
- 1 2 show that A²- 4A+ 3I = 0, where I is 2 x2 unit Matrix and 0 is 2x2 zero Matrix.
19) If I= 1 0 & B= 3 2
0 1 2 1 show that A²- 4A - I= 0, where 0 is the zero Matrix of order 2
20) If A= 4 3 and B= 1 0
2 5 0 1 find the values of x and y so that A² - xA + yI =0, where 0 is the zero Matrix of order 2. 9, 14
21) If A = 2 -1 show A² - 4A + 3I =0
-1 2
22) If A = 2 0 1 find A² - 5A + 6I
2 1 3
1 -1 0
23) If A = a b
c d
show A² - (a+d)A+(ad-bc) I=0
24) for what values if x,y,z If A .A = I′ &
A= 0 2y z
x y -z
x -y z
25) A= 1 -1 and B = 1 x
2 -1 4 y and
(A +B)² = A² + B² then find x,y.
26) if A= 6 5 & C= 11 0
5 6 0 11 find Matrix B such that AB= C. 6 -5
-5 6
MATRIX NOTATION:
A₂ ₓ ₃ = a₁₁ a₁₂ a₁₃
a₂₁ a₂₂ a₂₃
The above notation means that A is a matrix having two rows and three columns. a₁₁ is the element situated at the junction of 1st row and 2nd Column, a₂₃ is the element situated at the junction of 2nd row and 3rd Column, etc.
Example Let B₃ₓ₂ = 4 -1
0 2
1 4
then b₁₁ = 4, b₁₂ = -1, b₂₁=0, b₂₂= 2,
b₃₁ = 1, b₃₂= 4.
NOTE : A matrix A having m rows and n columns is also denoted (aᵢⱼ)ᵤₓₙ .
Example:
Construct a 2x 2 matrix A = (aᵢⱼ) whose elements are given by aᵢⱼ=(1+2j)²/2
Solution)
A= a₁₁ a₁₂
a₂₁ a₂₂
Where, a₁₁= (1+2x1)²/2= 9/2
a₁₂ = (1+2x2)²/2 = 25/2
a₂₁ = (2+ 2x1)²/2= 8
a₂₂ = (2+ 2x2)²/2= 18
So required matrix A= 9/2 25/2
8 18
Exercise - G
1) construct a 2 x 2 matrix A = [aᵢⱼ] whose elements are given by
A) aᵢⱼ = (i+j)²/2. 2 9/2
9/2 8
B) aᵢⱼ = (i -j)²/2. 0 1/2
1/2 0
C) aᵢⱼ= (i- 2j)²/2. 1/2 9/2
0 2
D) aᵢⱼ= (2i-j)/2. 1/2 0
3/2 1
E) aᵢⱼ= |2i -3j)|/2. 1/2 2
1/2 1
F) aᵢⱼ= |-3i+ j|/2. 1 1/2
5/2 2
2) construct a 2x2 Matrix A = [aᵢⱼ] whose elements are given by aᵢⱼ= (i - j)/(i + j).
0 -1/3
1/3 0
3) Construct a 2x3 Matrix whose elements aᵢⱼ are given by:
A) aᵢⱼ= i. j. 1 2 3
2 4 6
B) aᵢⱼ= 2i - j. 1 0 -2
3 2 1
C) aᵢⱼ= i+ j. 2 3 4
3 4 5
4) Construct a 2x2 Matrix whose elements aᵢⱼ are given by:
A) (i+j)²/2. 2 9/2
9/2 8
B) (i -j)²/2. 0 1/2
1/2 0
C) (2i+j)²/2. 9/2 8
25/2 18
D) aᵢⱼ= |-3i+ j|/2. 1 1/2
5/2 2
5) Construct a 2x3 matrix A= [aᵢⱼ] whose elements are given by
A) aᵢⱼ= (i - j)/(i+j). 0 -1/3 -1/2
1/3 0 -1/5
B) aᵢⱼ= i. j. 1 2 3
2 4 6
C) aᵢⱼ = 2i - j. 1 0 -1
3 2 1
D) aᵢⱼ = i +j. 2 3 4
3 4 5
E) aᵢⱼ = (i+j)²/2. 2 9/2 8
9/2 8 25/2
6) Construct a 3x4 matrix A= [aᵢⱼ] whose elements aᵢⱼ are given by:
A) aᵢⱼ= i+ j. 2 3 4 5
3 4 5 6
4 5 6 7
B) aᵢⱼ= i - j . 0 -1 -2 -3
1 0 -1 -2
2 1 0 -1
C) aᵢⱼ= 2i. 2 2 2 2
4 4 4 4
6 6 6 6
D) aᵢⱼ= j. 1 2 3 4
1 2 3 4
1 2 3 4
E) aᵢⱼ = 1/2 |-3i+j|. 1 1/2 0 1/2
5/2 2 3/2 1
4 7/2 3 5/2
7) Construct a 4x3 matrix elements
A) aᵢⱼ= 2i + i/j. 3. 5/2. 7/3
6 5 14/3
9 15/2 7
12 10 28/3
B) aᵢⱼ=(i-j)/(i+j). 0 -1/3 -1/2
1/3 0 -1/5
1/2 1/5 0
3/5 1/3. 1/7
Exercise - H
1)If A = 2. 4 -1 and B = 3 4
-1 0 2 -1 2
2 1
Find
i) A′
ii) A′ +B′
iii) (A - B)ᵗ
iv) (AB)′
v) Aᵗ Bᵗ
2) If A= 2 1 and B= 1 -2
3 4 -1 1
Prove (AB)'= B ' A '
3) If A = 0 -1
2 3
Prove (A ')' = A
4) If A = 4 2 -1 and B= 2 3
3 -7 2 -3 0
1 5
Find possible or not A+B, A - B , AB, BA
5) Let A= 2 -3 & B= 1 0
-7 5 2 -4 Verify
A) (2A)'= 2A'
B) (A+ B)'= A' + B'
C) (A - B)'= A' - B'D) (AB)' = B' A'
6) Let A=1 -1 0 & B= 1 2 3
2 1 3 2 1 3
1 2 1 0 1 1 verify
A) (A+ B)'= A'+ B'
B) (AB)'= B' A'
C) (2A)'= 2A'
7) If A= 2 1 3 & B= 1 -1
4 1 0 0 2
5 0 verify
(AB)'= B' A'
Exercise - I
** A square Matrix A is a symmetric Matrix iff A'= A
** A square Matrix A is a skew-symmetric Matrix iff A'= - A
*** Sum of a symmetric and skew-symmetric Matrix= 1/2 (A+ A')+ 1/2 (A - A')
1) If A= 3 -1 1
-1 2 5
1 5 -2 is a symmetric Matrix.
2) if A= 0 2 -3
-2 0 5
3 -5 0 is a skew-symmetric Matrix.
3) If A= 2 3
4 5 Prove A- A' is a skew-symmetric Matrix
4) if A= 3 -4
1 -1 show that A - A' is a skew-symmetric Matrix.
5) If A= 5 2 x
y z -3
4 t -7 is a symmetric Matrix, find x,y z, t. 4, 2 , -3
6) Express the Matrix A as the sum of symmetric and skew-symmetric Matrix
A= 4 2 -1
3 5 7
1 -2 1
7) Express the Matrix A as the sum of symmetric and skew-symmetric Matrix
A= 3 -4
1 -1
8) Let A= 3 2 7
1 4 3
2 5 7 Find matrix X and Y such that X+Y = A, where X is a symmetric and Y is a skew-symmetric matrix.
9) If A= 2 4
5 6 Prove A+A' is a symmetric matrix where A' is the transpose of A.
EXERCISE -J
Find the determinants of
1) 2 -3
4 1 14
2) 4 2 -3
1 4 4 4
3) 2 3 -1
4 1 2
3 1 -1 23
4) 1 0 1
2 -1 1
3 0 1
5) 2 3 -4
1 3 -1
3 1 4 37
***Evaluate Expanding by 2nd row:
6) 2 0 -1
1 3 2
-2 4 1 -20
2) 3 -2 1
1 0 1
2 4 5 2
EXERCISE - K
A) Find the cofactors of a₂₁ & a₂₂
1) A= 2 -3
1 4 3, 2
2) -4 1
3 -2 -1,-4
B) Find the cofactors of a₁₃, a₂₂, a₃₂
1) 0 -1 2
A= -3 4 -5
6 -7 8 -3,-12,-6
2) 2 4 -6
A= -8 4 3
2 -4 1 24, 14, 42
EXERCISE - L
Find the adjoint of the following:
1) a b d -b
c d -c a
2) -3 5 4 -5
2 4 -2 -3
3) p q s -q
r s -r p
4) - 2 3 4 -3
- 5 4 5 -2
5) 1 -3 1 3
2 1 -2 1
6) cosx sinx cosx - sinx
sinx cosx -sinx cosx
7) 1 tan(x/2) 1 -tan(x/2)
- tan(x/2) 1 tan(x/2) 1
8) 1 2 2 -3 2 2
2 1 2 2 -3 2
2 2 1 2 2 -3
9) 1 2 5 2 3 -13
2 3 1 -3 6 9
-1 1 1 5 -3 -1
10) 2 -1 3 -22 11 -11
4 2 5 4 -2 2
0 4 -1 16 -8 8
11) 2 0 -1 3 -1 1
5 1 0 -15 7 -5
1 1 3 4 -2 2
12) cosx - sinx 0 cosx sinx 0
sinx cosx 0 -sinx cosx 0
0 0 1 0 0 1
13) 1 1 1 9 -1 4
2 1 -3 -3 4 5
-1 2 3 5 -3 -1
14) 2 -1 3 -22 11 -11
4 2 5 4 -2 2
0 4 -1 16 -8 8
15) -6 0 3 7 -15 -3
-2 1 1 0 0 0
-4 -5 2 14 -30 -6
16) -4 -3 -3
If A= 1 0 1
4 4 3
Show that adj A= A
17) 1 -2 3
If A= 0 2 -1
-4 5 2
Find A(adj). 25 0 0
0 25 0
0 0 25
EXERCISE - M
State which of the following are INVERTIBLE :
1) 2 -3
2 3 YES
2) 4 -1
-4 1. NO
3) 5 2 -3
4 -5 2 NO
0 3 -2
4) 1 1 -1
2 3 1. YES.
1 -1 -2
*** FIND the condition for which the following matrices are INVERTIBLE
1) a b
c d ad-bc≠ 0
2) sinx cosx
-sinx cosx (0≤0≤π/2). 0≠0,π/2
Find the inverse of following:
1) 2 -1 4/11 1/11
3 4 -3/11 2/11
3) cosx sinx cosx -sinx
-sinx cosx sinx cosx
4) 0 1 0 1
1 0 1 0
5) a b (1+bc)/a -b
c. (1+bc)/a - c a
6) 2 5 1/17 -5/17
-3 1 3/17 2/17
7) 1 tanx cos²x sinx cos
-tanx 1 sinx cosx cos²x
8) If A=3 2 & B= 6 7
7 5 8 9 then find the value of (AB)⁻¹. -47 39/2
41 -17
9) 1 3 3 7 -3 -3
1 4 3 -1 1 0
1 3 4 -1 0 1
10) 1 2 3 -5/18 1/18 7/18
2 3 1 1/18 7/18 -5/18
3 1 2 7/18 -5/18 1/18
11) 1 2 5 4/27 17/27 3/27
1 -1 -1 -1/27 11/27 2/9
2 3 -1 5/27 1/27 -1/9
12) 2 0 -1 3 -1 1
5 1 0 -15 6 -5
0 1 3 5 -2 2
13) 1 0 0 1 0 0
0 cosx sinx sinx cosx 0
0 sinx -cosx 0 sinx -cosx
14) 0 0 -1 -2 1 1
3 4 5 14 -1/2 -3/4
-2 -4 -7 -1 0 0
*** FIND A If:
1) 2 - 1 2 1
A⁻¹= -3 2 3 2
2) 2 -1 3 -2 2 4
A⁻¹=1 1 1 0 1 -1
1 -1 1 2 -1 -3
EXERCISE -N
Prove that
1) a) A=2 3
5 -2 then A⁻¹ = A/19
2) if A=. 4 5
2 1 Verify A= 5I +6A⁻¹
3) show A = 2 -1 and B = 2
4 3 -3
and AX = B Find the matrix X.
4) If A= 1 -2 & B= 6 0
1 4 0 6 Find the Matrix C If CA = B. 4 2
-1 1
5) If A= 2 1 B= -3 2 & C= 1 0
3 2 5 -3 0 1 find Matrix X if AXB= C. 1 1
1 0
6) If A= 1 -4 B= -16 -6
3 -2 7 2 find the Matrix X if AX= B. 6 2
11/2 2
7) A= 5 4 & B= 1 -2
1 1 1 3 find the Matrix X as the relation AX = B. -3 -14
4 17
8) If A= 3 2 B= -1 1 & C= 2 -1
7 5 -2 1 0 4 find the Matrix X as AXB= C. -16 3
24 -5
9) If A= 5 3 & B= 14 7
-1 -2 7 7 find the Matrix X as XA= B. 3 1
1 -2
10) if A= 2 -1
-1 2
satisfies the relation A² - 4A + 3I =0 hence find A⁻¹
11) If A = 1 1
2 3
prove A² - 4A +5I=0. Hence find A⁻¹.
3/5 1/5
-2/5 1/5
12) If A = 4 5 satisfies A² - I=10A
5 6 Hence find A⁻¹
13) A= 2 -3
3 4 satisfies the equation x²- 6x+17= 0. Hence find A⁻¹. 4/17 3/17
-3/17 2/17
14) If A= 3 2
2 1
Prove A² - 4A - I= 0 where I= 2x2 metrics and 0 is Null metrics. Then find inverse of A.
15) If A= 2 -1
-1 2
Prove A² - 4A + 3I = 0 where I= 2x2 metrics and 0 is Null metrics.
16) A= 2 3
1 2 verify A²- 4A + I= 0, then find A⁻¹. 2 -3
-1 2
17) A= 3 1
7 5 find x and y so that A² + xI = yA. Hence, find A⁻¹. 8,8 5/8 -1/8
-7/8 3/8
18) A= 3 2
1 1 find a and b so that A² + aA+ bI = 0. Hence, find A⁻¹. -4,1 1 -2
-1 3
19) If A= 4 5
2 1 find A⁻¹ and show that 2A⁻¹ =9I - A.
20) If A= 4 3
2 5 find x and y such that A² - xA + yI = O. Hence, find the value of A⁻¹.
9,14 5/14 -3/14
-1/7 2/7
21)A= 1 2 2 satisfies A²-4A-5I=0
2 1 2 and, Hence find A⁻¹
2 2 1 3/5 2/5 2/5
2/5 -3/5 2/5
2/5 2/5 -3/5
22) IfA= 2 2 0 then A³-13A+12I=0
2 1 1 . Hence find A⁻¹
-7 2 -3
23) A= 1 2 3
3 -2 1 show A³ -23A-40I=0
4 2 1 Hence find A⁻¹
24) If A= 1 0 -2
-2 -1 2
3 4 1 Show that A³- A²- 3A - I = O. Hence find A⁻¹. -9 -8 -2
8 7 2
-5 -4 -1
25) If A = 1 0 -2
2 2 4
0 0 2
Find A² - 3A + 2I where I= 3x3 then find Inverse of A.
EXERCISE -O
Find the inverse of each of the following matrices by using elementary row transformation:
A)
1) 5 2 1 -2
2 1 -2 5
2) 1 6 5/23 -6/23
-3 5 3/23 1/23
3) 7 1 3/25 1/25
4 -3 4/25 -7/25
4) 3 10 7 -10
2 7 -2 3
B)
1) 0 1 2 1/2 -1/2 1/2
1 2 3 -4 3 -1
3 1 1 5/3 -3/2 1/2
2) 2 0 1 3 -1 1
5 1 0 -15 6 -5
0 1 3 5 -2 2
3) 2 3 1 1 1 -1
2 4 1 -1 1 0
3 7 2 2 -5 2
4) 3 -3 4 1 -1 0
2 -3 4 -2 3 -4
0 -1 1 -2 3 -3
5) 2 -1 4 -2 1/2 1
4 0 2 11 -1/2 -2
3 -2 7 4 -1/2 -2
EXERCISE - P
Solve:
1)
A) 5x - 7y =2, 7x - 5y =3,. 11/24, 1/24
B) x - 2y -4 =0, -3x +5y+7 =0, -6,-5
C) 3x+ 4y =5, x-y =-3. -1,2
D) ax+ by=c, a²x +b²y =c².
E) 3/x - 5/y =1 , 2/x +3/y = 7.
F) a/x -b/y =a , a/y - b/x =b.
G) 5x +7y =-2, 4x +6y+3=0. 9/2,-7/2
H) 5x +2y =3, 3x +2y=5. -1,4
I) 3x +7y =4, x +2y+1=0. -15,7
2)
A) x+y-z=3, 2x+3y+z=5 , 3x-y-7z=1. 3,1,1
B) x+ 2y+z=7; x+ 3z=11; 2x-3y=1. 2,1,3
C) 2y-3z=0, x+3y= -4, 3x+4y =3
E) x+y-6z=0, -3x+y+2z=0, x-y+2z=0
F) x+y+z=4, 2x-y+2z=5 , x-2y-z=-3
F) (a+b)x - (a-b)y= 4ab,
(a-b)x + (a+b)y = 2(a² -b²)
G) 1/x +2/y+ 3/z=2
2/x +4/y +5/z =3
3/x +5/y+6/z= 4
H) 2/x +3/y +2=0
5/y - 2/z -4 =0
3/z +4/x +7=0
Continue.......
Mg. A- R.1
1) If A = 2 -1
-1 2 and I is the unit Matrix of order 2, then A² is:
a) 4A -3I b) 3A -4I c) A - I d) A + I
2) The multiplicative inverse of 2 1
7 4
a) 4 -1 b) 4 -1 c) 4 -7 d) -4 -1
-7 -2 -7 2 7 2 7 -2
3) A is a square Matrix such that A³ = I; then A⁻¹ is:
a) A² b) A c) A³ d) none
4) Assuming that the sums and products given below are defined, which of the following is not true for Matrices?
a) AB = AC does not imply B= C
b) A + B = B+ A
c) (AB)' = B'A'
d) AB = 0 implies A=0 or B= 0
5) If A= 1 0 2 B= 5 a -2
-1 1 -2 1 1 0
0 2 1 -2 -2 b then the value of a and b are:
a) -4,1 b) -4 , -1 c) 4 ,1 d) 4 , -1
6) If A= -1 0
0 2 then the value of A³ - A² is
a) I b) A c) 2A d) 2I
7) If A= -x -y
z t then transpose of adj A is
a) t z b) t y c) t - z d) none
-y -x - z -x y -x
8) If A is a square Matrix of order 3x3 and $ is a scalar, then adj($A) is equal
a)$ adj A b) $²adj A c) $³adj A d) $⁴adj A
9) If A=3 5 B= 1 17
2 0 0 -1 then |AB| =?
a) 80 b) 100 c) -110 d) 92
10) The inverse of the Matrix 5 -2
3 1
a)-2/13 5/13 b)1 2 c) 1/11 2/11 d)1 3
1/13 3/13 -3 5 -4/11 5/11 -2 5
Mg. A- R.2
1) If A is a singular Matrix of order n then A. (adj A) is equal to
a) a null Matrix b) a row Matrix c) a column Matrix d) none
2) If A and B are two matrices and A⁻¹ and B⁻¹ exist, then (AB)⁻¹ is equal to
a) A⁻¹B⁻¹ b) AB⁻¹ c) A⁻¹B d) B⁻¹ A⁻¹
3) If A= 3 -5
-4 2 then the value of A² - 5A is
a) I b) 14I c) O d) none
4) If A= 5 6 -3
-4 3 2
-4 -7 3 then the co-factors of the elements of second row are:
a) 3,3,11 b) 3,-3,11 c) -39,3,-11 d) 39,-3, 11
5) If A= 1 2 & B= 1 2
2 3 2 1
3 4
Then
a) both AB and BA exist
b) neither AB nor BA exist
c) AB exists but BA does not exist
d) AB does not exist but BA exists
6) If A= 2 -1 B= 1 0
0 1 -1 -1 then (A+ B)² is not equal to
a) A² + AB+ BA+ B²
b) A² + AB+ BA+ B²I
c) A²I + AB+ BA+ B²
d) A² + 2AB+ B²
7) If A be an nx n Matrix and k any scalar, then det kA is equal to
a) k detA b) nᵏdetA c) kⁿdetA d) kn detA
8) If A= 1 2
3 -5 then A⁻¹ is:
a)-5 -2 b) -5/11 -2/11 c) 5/11 2/11 d)5 2
-3 1 -3/11 1/11 3/11-1/11 3 -1
9) If A= -1 2 & B= 5
2 -1 7 and AX= B, then X is
a) 19 17 b) 19/3 c) 19/3 17/3 d) 19
17/3 17
10) If A≠ O and B≠O are two matrices such that AB= O, then which of the following is correct?
a) detA= 0 or det B= 0
b) detA= 0 and det B= 0
c) detA=det B ≠ 0 d) none
Mg. A- R.3
1) If A is a square Matrix of order 3x3 and k is a scalar, then adj(kA) is equal to which of the following?
a)k adj A b)k² adj A c) k³ adj A d)2k adj A
2) If A= 0 1 2
1 2 3
3 1 1 and it's inverse B=[bᵢⱼ], then the element b₂₃ of Matrix B is
a) -1 b) 1 c) -2 d) 2
3) If A= a₁₁ a₁₂ a₁₃ B= 1 2 3
a₂₁ a₂₂ a₂₃ 2 3 4
a₃₁ a₃₂ a₃₃ 3 4 5
C= -1 -2 D= -4 -5 -6
-2 0 0 0 1
0 -4
with the relation A= BCD, then the value of a₂₂ is
a) 40 b) -40 c) -20 d) 20
4) If A= 1 2 & B= 3 8
3 4 7 2 with the relation 2X+ A = B, then the Matrix X is:
a) 2 -6 b) 1 -3 c) 1 3 d) 2 -6
4 -2 2 -1 2 -1 4 -2
5) If A= a 2
2 a and |A³|= 125, then a is
a) ±2 b) ±3 c) ±5 d) 0
6) The inverse Matrix 1 0 0
a 1 0 is
b c 1
a) 1 0 0 b) 1 0 0
-a 1 0 -a 1 0
ac-b -c 1 -b -c 1
c) 1 -a ac- b d) 1 0 0
0 1 -c -a 1 0
0 0 1 ac b 1 7)
7) if A=|aᵢⱼ| and Aᵢⱼ denotes the co-factors of aᵢⱼ , then which of the following is not equal to zero?
a) a₃₁A₁₁+ a₃₂A₁₂ + a₃₃A₁₃
b) a₁₁A₃₁ + a₁₂A₃₂+ a₁₃A₃₃
c) a₂₁A₂₁ + a₂₂A₂₂+ a₂₃A₂₃
d) a₃₁A₂₁ + a₃₂A₂₂+ a₃₃A₂₃
8) The minor of (-4) and 9 and the co-factor of (-4) and 9 in -1 -2 3
-4 -5 -6
-7 8 8 are
a) 42,3; -42,3. b) -42,-3; 42,-3
c) 42,3; -42,-3 d) 42,3; 42,3
9) If A= 0 3 & kA= 0 4a
4 5 3b 60 then the value of k, a and b are respectively ---
a) 12,9,6 b) 9,12,6 c) 12,9,12 c) 16,12,9
10) If the Matrix A satisfies the equation BA = C as B= 1 3 C= 1 1
0 1 0 -1 then which of the following represents A ?
a) 1 4 b) 1 4 c) 1 -4 d) 1 -2
-1 0 0 -1 1 0 0 -1
Mg. A- R.4
1) For any Matrix A, if A⁻¹ exists then which of the following is not true?
a) (A⁻¹)⁻¹= A b) (A')⁻¹ = (A⁻¹)'
c) (A²)⁻¹= (A⁻¹)² d) |A⁻¹|= |A|⁻¹
2) If I is the unit Matrix of order 10x10, then the determinant of I is equal to --
a) 10 b) 1/10 c) 9 d) 1
3) If A and B are two square matrices of the same order, then (A+ B)² is
a) A²- 2AB + B² b) A²- AB - BA + B²
c) A²- 2BA + B² d) A²+ 2AB + B²
4) For how many values of x in the closed interval [-4,-1], the Matrix
3 -1+x 2
3 -1 x+2
x+3 -1 2 is singular?
a) 0 b) 1 c) 2 d) 3
5) If A= 7 1 2 & B= 3 & C= 4
9 2 1 4 2
5
Find the value AB+ C.
a) 43 b) 43 c) 45 d) 44
44 45 44 45
6) If A= 3 4
5 7 then the value of A(adj A) is equal to
a) I b) |A| c) |A|. I d) none
7) If x+ y 2x + z = 4 7
x - y 2z+ w 0 10 then the values of x, y and z.
a) 2,3,1,2 b) 2,2,3,4 c) 3,3,0,1 d) 2,2,4,3
8) The Matrix 2 k -4
-1 3 4
1 -2 -3 is non-singular if
a) k≠ 2 b) k≠ 3 c) k≠ -3 d) k ≠ -2
9) If A is an invertible Matrix, then the value of det(A⁻¹) is
a) 0 b) I 1/det A d) det A
10) If A= 3 2 & AC = 19 24
4 5 37 46 then Matrix C is:
a) 3 4 b) 3 5 c) 5 4 d) 3 2
5 6 4 6 2 6 6 4
Mg. A - R.5
1) Let A=[5] be a Matrix of order 1x1. Then adjA is equal to
a) [1] b) [5] c) [0] d) 1
5
2) If A² - A + I =0 then the inverse of A is
a) A - I b) A + I c) A d) I - A
3) If A= 1 1
1 1 then Aⁿ for all n ∈ℕ is:
a) 2ⁿA b) 2ⁿ⁻¹A c) 2ⁿ⁺¹A d) nA
4) Let A and B are two matrices such that AB= A and BA = B. Then A² is equal to -
a) O b) I c) A d) B
5) If A= 4 2
-1 1 then the value of (A - 2I)(A - 3) is
a) A b) I c) O d) 4I
4) If A= 1 -2 & B= a 1
2 -1 b -1 and (A+ B)² = A²+ B², then the values of a and b are
a) 4,1 b) 1,4 c) 0, 4 d) 2, 4
5) Let A= a 0 & B= 1 0
1 1 5 1 if A² = B, then the value of a is.
a) 1 b) -1 c) 4 d) no real value of a
6) The matrix 0 7 4
-7 0 -5
-4 5 0 is
a) symmetric b) skew-symmetric c) non singular d) orthogonal
7) Let A= 1 -1 1 4 2 2
2 1 3 & 10B = -5 0 a
1 1 1 1 -2 3 if B is the inverse of the Matrix A, then the value of a
a) 2 b) -1 c) -2 d) 5
8) If A= 0 0 -1
0 -1 0
-1 0 0 then the only correct statement about the Matrix A is --
a) A⁻¹does not exist b) A= (-1)I
c) A is a zero Matrix. d) A² = I
9) If A= -1 2 & B= 3 -2
3 4 1 5 then find a Matrix C such that 2A +B +C is the zero Matrix of order 2.
a) -1 -2 b) 1 -2 c) -1 -2 d) 1 2
-7 -13 -7 13 7 13 7 13
10) If 2A+ B= 2 3 & 3B - 2A = 10 1
5 1 3 5 Find the Matrix A and B.
a) -1/2 2 & 3 1
3/2 -1/4 2 3/2
b) -1/2 2 & 3 -1
3/2 -1/4 2 3/2
c) 1/2 2 & -3 1
3/2 -1/4 2 3/2
d) 1/2 2 & 3 1
3/2 -1/4 2 -3/2
Mg. A- R.6
1) If A is and m x n matrix and B is n x p matrix does AB exists? If yes, write its order.
a) Yes,.mxp b) yes, mx n c) yes,mx q d) n
2) If A= 2 1 4 and B= 3 -1
4 1 5 2 2
1 3 , write the order of AB and BA.
a) 2x2, 3x3 b) 2x3, 3x2 c) 2x4, 3x3 d) 1x1, 2x2
3) If A= 4 3 and B= - 4
1 2b 3 Find AB.
a) 7 b) -7 c) 2 d) -2
2 -2 7 -7
4) If A= 2 -1
-1 2 and I is the unit Matrix of order 2, then A² is
a) 4A - 3I b) 3A - 4I c) A- I d) A+ I
5) Find the multiplicative inverse of 2 1
7 4
a) 4 -1 b) 4 -1 c) 4 -7 d) -4 -1
-7 -2 -7 2 7 2 7 -2
6) If A= 1
2
3 write AA'.
a) 1 2 3 b) 1 -2 3 c) -1 2 3 d) -1 -2 -3
2 4 6 2 4 6 2 4 6 2 4 6
3 6 9 3 6 9 3 6 9 3 6 9
7) A is a square Matrix such that A³= I; then inverse of A is
a) A² b) A c) A³ d) none
8) Assuming that the sum and products given below are defined, which of the following is not true for Matrices?
a) AB= AC done not imply
b) A+ B = B+ A
c) (AB)' = B' A'
d) AB = O implies A= O or, B= O
9) Give an example of two non-zero 2 x 2 matrices A and B such that AB= O.
10) If A= 2 3
5 7 find A+ A'.
a) 4 8 b) -4 8 c) 4 -8 d) -4 -8
8 1 8 4 8 14 14 8
Mg. A- R.8
1) If A= cosx sinx
- sinx cosx find x satisfying 0< x < π/2 when A+ A'= I
a) π b) π/2 c) π/3 d) π/4
2) If A=-1 2 & B= 3 -2
3 4 1 5 then find a Matrix C such that 2A + B+ C is the zero Matrix of order 2.
a) -1 -2 b) 1 -2 c) -1 2 d) 1 2
-7 -13 7 13 7 13 7 13
3) Determine two matrices A and B, when
2A+ B= 2 3 & 3B -2A= 10 1
5 1 3 5
3) If A= cosx -sinx
sinx cosx. find AA'.
a) 0 1 b) 1 0 c) 0 0 d) 1 1
0 1 0 0 1 1 1 0
4) If A= 1 0 and B= x 0
y 5 1 -2 and the relation A+ 2B= I, where I is 2 x 2 unit matrix. find x and y.
a) 0,1 b) 0,-1 c) 0,2 d) 0,-2
5) If A=1 2 B=1 2
1 2 3 4 determine AB, BA. 4 6 3 5
7 10 7 11
6) If A= cosx sinx & B= cosy siny
sinx cosx siny cosy show that AB= BA
7) If A= 3 2 5 & B= 1 2 & C= 7 -8
7 -4 0 2 -1 5 9
3 5
Find the value of AB- C. 15 37
-6 9
8) If A= 2 5 & X= x and B= 5
3 4 y 8 then show from the relation A.X = B that 2x+ 5y = 5 and 3x + 4y= 8.
9) If A= 1 -1
-1 1 satisfies the matrix equation A²=kA,write the value of k.
a) 0 b) 1 c) 2 d) 3 e) none
10) If B= 1 -2 & B= 6 0
1 4 0 6 find A if the relation A.B= C. 4 2
-1 1
Mg. A-R.9
1) If A= 2 -3 & B= 1 5 b & C= 2 4 1
1 a 0 2 -3 1 -1 5 with the relation AB= C then find a,b
a) 3, 4 b) -3, -4 c) -3, 4 d) 3-, 4
2) If A=2 3 & B= 1 0
3 10 0 1 then find (2I - A)(10I - A), Where I is identity Matrix.
a) 9 b) I c) 3 d) 9I
3) If A= 1 1
1 1 satisfies A⁴= kA, then write the value of k.
a) 0 b) 1 c) 2 d) -1 e) none
4). -1 0 0
If A= 0 -1 0
0 0 -1 find A².
5) If A= x 2 and B= 3
4 and the relation AB= 2 find x.
a)1 b) 2 c) -2 d) none
6) If A= 2 3 & B= 3 7
6 5 4 0 then find (A+ B)². 125 100
100 125
7) If A= [aᵢⱼ] is a 2 x 2 matrix such that aᵢⱼ= i+ 2j, write A.
8) If A= 2 -2 2 0
-3 4 find (-A²+6A). 0 2
9) If A= 1 0 6 0
2 1 then 2A²+4I is . 8 6
10) write matrix A satisfying A+ B= C where B= 2 3 & C = 3 -6
-1 4 -3 8
Mg. A- R.10
1) If f(x)= x²+ 2x and A= 1 2
4 -3 find f(A)
11 0
0 11
2) if A= [aᵢⱼ] is a square Matrix that aᵢⱼ = i² - j², then write whether A is symmetric or skew symmetric.
3) If A= 1 3
3 4 then A²- 5A - 2I is
a) 0 b) 1 c) -1 d) 2
4) If A= 3 -2 and B= 1 0
4 -2 0 1 then find the value of k such that, A²= kA - 2I.
a) 0 b) 1 c) -1 d) -2
5) For any square matrix write whether AA' is symmetric or skew-symmetric.
6) If A= 1 0 1
0 0 0
1 0 1 then A² is
a) A b) A' c) 2A d) 2A'
7)If A= 3 2 2 -1
5 4 then inverse of A is: -5/2 3/2
8) If A=2 3
5 -2 then inverse of A is:
a) A b) A' c) A/91 c) A/19
9) If A= [aᵢⱼ] is a skew symmetric matrix, then write the value of ᵢ∑aᵢⱼ
10) If A= [aᵢⱼ] is a skew symmetric matrix, then write the value of ᵢ∑ ⱼ∑aᵢⱼ .
Mg. A-R.11
1) If A and B are symmetric matrices, then write the condition for which AB is also symmetric.
2) If A= 3 5
7 -11 then AA⁻¹ is:
a) A b) A⁻¹ c) 0 d) I
3) If A= 3 5
7 -11 then A⁻¹A is:
a) A b) A⁻¹ c) 0 d) I
4) If B is a skew-symmetric matrix, write whether the matrix AB A' is symmetric or Skew-symmetric.
5) Find the values of x and y, if 2A+ B= C where A= 1 3 B= y 0 & C= 5 6
0 x 1 2 1 8
6) If x+ 3 4 = 5 4
y -4 x+ y 3 9 then find x and y.
7) If A is a singular Matrix, then write the value of |A|.
8) For what value of x, the following matrix is singular ?
5 - x x+1
2 4
9) write the value of the determinant of
2 3 4
2x 3x 4x
5 6 8
10) State whether the matrix 2 3
6 4 is singular or non-singular.
Mg. A- R.12
1) find the value of the determinant of
4200 4201
4202 4203
2) find the value of the determinant
101 102 103
104 105 106
107 108 109
3) Write the value of the determinant
a 1 b+c
b 1 c+a
c 1 a+b
4) If A= 0 i & B= 0 1
i 1 1 0 find the value of |A|+| B|.
5) if A= 1 2 & B= 1 0
3 -1 -1 0 find |AB|.
6) If A= 1 2 and B= 1 -4
3 -1 3 -2 find |AB|.
7) If A=[aᵢⱼ] is a 3x3 diagonal matrix such that a₁₁=11, a₂₂= 2 and a₃₃ = 3, then find |A|.
8) If A=[aᵢⱼ] is a 3x3 scalar Matrix such that a₁₁=2, then write the value of |A|.
9) If I₃ denotes Identity matrix of order 3x3, write the value of its determinant.
10) A matrix A of order 3x3 has determinant 5. What is the value of |3A| ?
Mg. A- R.13
1) On spending by first row, the value of the determinants of 3x3 square Matrix A=[aᵢⱼ] is a₁₁ C₁₁+ a₁₂C₁₂+ a₁₃ C₁₃, where Cᵢⱼ is the cofactor of aᵢⱼ in A. write the expression for its value on expanding by the second column.
2) let A= [aᵢⱼ] be a square matrix of order 3x3 and Cᵢⱼ denote cofactor of aᵢⱼ in A. If |A|= 5, write the value of a₃₁C₃₁+ a₃₂C₃₂+ a₃₃Ca₃₃.
3) In question 18, write the value of write the value of a₁₁C₂₁+a₁₂C₂₂ + a₁₃ C₂₃ .
4) Write the value of
sin 20 - cos 20
sin 70 cos 70
5) If a square Matrix satisfying A'. A = I, write the value of |A|.
6) If A and B are square matrices of the same order such that |A| = 3 and AB= I, then write the value |B|.
7) A is a skew-symmetric of order 3, write the value of |A|.
8) If A is a square matrix of order 3 with the determinants 4, then write the value of |-A|.
9) if A is square Matrix such that |A|= 2, Write the value of |AA'|.
10) find the value of the determinant
243 156 300
81 52 100
-3 0 4
Mg. A- R.14
1) write the value of the determinant of
2 -3 5
4 -6 10
6 -9 15
2) If the matrix 5x 2
-10 1 is singular, find the value of x.
3) If A is a square matrix of order n x n such that |A| = K, then write the value of |-A|.
4) find the value of the determinant
2² 2³ 2⁴
2³ 2⁴ 2⁵
2⁴ 2⁵ 2⁶
5) if A and B are nonsingular matrices of the same order, write whether AB is singular or non-singular.
6) A metrix of order 3 x 3 has determinant 2. What is the value of |A(3I)|, where I is the identity matrix of order 3 x 3.
7) If A and B are square matrices of order 3 such that |A| = -1, |B| = 3, then find the value of |3AB|
8) write the cofactor of a₁₂ in the following metrix 2 -3 5
6 0 3
1 5 -7
9) If 2x+5 3
5x+2 9 = 0, find x.
10) Write the adjoint of the matrix
A= -3 4
7 -2
Mg. A- R.15
1) If A is square matrix such that A(adj A)= 5I, where I denotes the identity matrix of the same order. Then, find the value of |A|.
2) If A is a square Matrix of order 3 such that |A|= 5, write the value of |adj A|.
3) If A is a square matrix of order 3 such that |adj A|= 64, find |A|.
4) if A is a non-singular Square matrix such that |A|=10, find |A⁻¹|
5) If A, B, C are three non-null square matrices of the same order, write the condition on A such that AB= AC => B= C.
6) If A is a non-singular square Matrix such that A⁻¹= 5 3
-2 -1 then find (A')⁻¹.
7) if adj A= 2 3
4 -1 and adjoint of
B= 1 -2
-3 1 find adj of AB.
8) If A is a symmetric matrix, write whether A' is symmetric or Skew-symmetric.
9) If A is a square matrix of order 3 such that |A| = 2, then write the value of adj(adj A).
10) If A is a square matrix of order 3 such |A|=3, then find the value of |adj (adj A)|.
Mg. A- R.16
80) If A is a square matrix of order 3 such that adj(2A)= k adj(A), then write the value of k.
81) If A is a square matrix, then write the matrix adj(A') - (adj)'.
82) Let A be a 3 x 3 square Matrix such that A(adj A)= 2I, where I is the identity Matrix, write the value of |adj A|.
83) if A is a nonsingular symmetric matrix, write whether A⁻¹ is Symmetric or Skew-symmetric.
84) If A= cosx Sinx
- sinx cos x and A(adjoint A)= k 0
0 k then find the value of k.
85) If A is an invertible Matrix such that |A⁻¹|= 2, find the value of |A|
86) If A is a square Matrix such that A(adj A)= 5 0 0
0 5 0
0 0 5 then write the value of |adj A|.
87) If A= 2 3
5 -2 be such that A⁻¹= kA, then find the value of k.
88) Let A be a square matrix such that A² - A + I= O, then write A⁻¹ in terms of A.
89) using cramer's rule write the solution of the system of equations 3x+4y=7; 7x - y= 6.
90) find the inverse of the matrix
3 -2
-7 5
91) find the inverse of cosx sinx
-sinx cosx
92) If A= 1 -3
2 0 write adj A.
93) If A= a b & B = 1 0
c d 0 1 find adj(AB).
94) If A= 1 0 0 & B= x & C= 1
0 1 0 y -1
0 0 1 z 0 with the relation AB= C, then find x,y, z.
95)If A= 1 0 0 & B= x & C= 1
0 -1 0 y 0
0 0 -1 z 0 with the relation AB= C, then find x,y and z.
96)If A= 1 0 0 & B= x & C= 1
0 y 0 -1 0
0 0 1 z 1 with the relation AB= C, then find x,y and z.
97) If A= 3 -4 0 & B= x
9 2 0 y with the relation AB= C, then find x,y.
98) If A= 1 0 0 & B= x & C= 2
0 0 1 y -1
0 1 0 z 3 with the relation AB= C, then find x,y, z.
99) If A= 2 4 & B= n & C= 8
4 3 1 11 with the relation AC= B, then find n.
MULTIPLE CHOICE QUESTIONS
----------*******------------*********--------
1) If A= 1 0 0
0 1 0
a b -1 then A² is equal to
A) null matrix B) a unit matrix.
C) - A D) A
2) If A= i 0
0 i, n∈ ℕ, then A⁴ⁿ equal
A) 0 i B) 0 0 C). 1 0 D) 0 i
i 0 0 0 0 1 i 0
3) If A and B are two Matrices such that AB= A and BA= B, then B² is equals to
A) B. B) A C) 1 D) 0
4) If AB= A and BA= B, where A and B are square matrices, then
A) B²= B and A²= A.
B) B²≠ B and A²= A
C) A²≠ A and B²= B
D) A²≠ A and B²≠ B
5) If A and B are two Matrices such that AB= B and BA= A, then A²+ B² is equal to
A) 2AB B) 2BA C) A+B. D) AB
6)
7) if the matrix AB is zero, then
A) it is not necessary that either A= O or B= O.
B) A= O or B= O C) A= O and B= O
D) all the above Statements are wrong.
8)
9) If A and B are square matrices of order 3, A is non-singular and AB= O, then B is a
A) null matrix. B) singular Matrix
C) unit Matrix
D) non singular matrix
10) If A= n 0 0 and B= a₁ a₂ a₃
0 n 0 b₁ b₂ b₃
0 0 n c₁ c₂ c₃ then AB is equals to
A) B B) nB. C) Bⁿ D) A+ B
11) If A= 1 a
0 1 then Aⁿ (where n ∈ ℕ) equals
A) 1 na. B) 1 n²a C) 1 na D) n na
0 1 0 1 0 0 0 n
12) If A= 1 2 x and B= 1 -2 y
0 1 0 0 1 0
0 0 1 0 0 1 and AB= I, then x+ y is
A) 0. B) -1 C) 2 D) none
13) If A= 1 -1 & B=a 1
2 -1 b -1 and (A+ B)² = A²+ B², values of a and b
A) a= 4, b= 1 B) a= 1, b= 4.
C) a= 0, b= 4 D) a= 2, b= 4
14) If A= a b
c -a is such that A²= I, then
A) I+ a² + bc= 0 B) I- a² + bc= 0
C) I- a² - bc= 0. D) I+ a² - bc= 0
15) If S= [Sᵢⱼ] is a scalar matrix such that sᵢⱼ = k and A is a square matrix of the same order, then AS= SA= ?
A) Aᵏ B) k+ A C) kA. D) kS
16) If A is a square Matrix such that A² = A, then (I+A)³ - 7A is equals to
A) A B) I - A C) I. D) 3A
17) if a matrix A is both symmetric and skew symmetric, then
A) A is a diagonal matrix
B) A is zero matrix.
C) A is scalar matrix
D) A is a square matrix
18) the matrix 0 5 -7
-5 0 11
7 -11 0 is
A) a skew-symmetric matrix
B) a symmetric matrix
C) a diagonal matrix.
D) an upper triangular matrix
19) If a square matrix, then AA is a
A) skew symmetric matrix
B) symmetric matrix
C) diagonal Matrix
D) none.
20) If A and B are symmetric matrices, then ABA is
A) symmetric matrix.
B) skew-symmetric matrix
C) diagonal Matrix
D) scalar matrix
21) If A= 5 x
y 0 and A= A', then
A) x= 0, y= 5 B) x+y= 5
C) x= y. D) none
22) If A= 3 x 4 matrix and B is a matrix such that A'B and BA' are both defined. then, B is of the type
A) 3x4. B) 3x3 C) 4x4 D) 4x3
23) If A= [aᵢⱼ] is a square matrix of even order such that aᵢⱼ = i² - j³, then
A) A is a skew-symmetric matrix and |A|= 0
B) A is symmetric metrix and |A| is a square.
C) A is a symmetric Matrix and |A|= 0 D) none.
24) If cosx - sinx
sin x cosx then A'+ A= I, if
A) x=nπ, n ∈ Z
B)x=(2n+1)π/2 , n ∈ Z
C) x= 2nπ +π/3, n ∈ Z. D) none
25) If A= 2 0 -3
4 3 1
-5 7 2 is expressed as the sum of a symmetric and skew symmetric matrix, then the symmetric matrix is
A) 2 2 -4 B) 2 4 -5
2 3 4 0 3 7
-4 4 2. -3 1 2
C) 4 4 -8 C) 1 0 0
4 6 8 0 1 0
-8 8 4 0 0 1
26) Iut of the given matrices, choose that matrix which is a scalar Matrix:
A) 0 0 B) 0 0 0 C) 0 0 D) 0
0 0. 0 0 0 0 0 0
27) the number of all possible matrices of order 3x3 with entry 0 or 1 is
A) 27 B) 18 C) 81 D) 512
28) Which of the given values of x and y make the following pairs of matrices equal ?3x+7 5 = 0 y-2
y+1 2 - 3x 8 4
A) x= -1/3, y= 7
B) x= 7, y= 2/3
C) x= -1/3, y= -2/5
D) not possible to find.
29) If A= 0 2 and kA= 0 3a
3 -4 2b 24
then the values of k, a, b are respectively
A) -6,-12,-18 B) -6,4,9
C) -6,-4,-9. D) -6,12,18
30) If I= 1 0 and J= 0 1
0 1 -1 0 and B= cosx sinx
-sinx cosx then B equals
A) I cosx + J sinx.
B) I sinx + J cosx
C) I cosx - J sinx
D) - I cosx + J sinx
31) The trace of the matrix
A= 1 -5 7
0 7 9
11 8 9 is
A) 17. B) 25 C) 3 D) 12
32) If A=[aᵢⱼ] is a scalar matrix of order n x n such that aᵢⱼ = k, for all i, then trace of A equal to
A) nk. B) n+ k C) n/k D) none
33) If A and B are square matrices of order 2, then det(A+B)= 0 is possible only when
A) det(A+B)= 0 or det(B)= 0
B) det(A)= 0 + det(B)= 0
C) det(A)= 0 and det(B)= 0
D) A'+ B= O.
34) which of the following is not correct in a given determinant of A, where A=[aᵢⱼ]₃ ₓ ₃.
A) Order of minor is less than order of the det (A)
B) minor of an element can never be equal to cofactor of the same element.
C) Value of a is determinant is obtained by multiplying elements of a row or column by corresponding cofactors
D) order of minors and cofactors of the elements of A is same
35) Let x 2 x
x² x 6
x x 6
Then the value ofax⁴+bx³+cx²+dx+e is equal to
A) 0 B) -16 C) 16 D) none.
36) the value of the determinant. a² a 1
cos nx cos(n+1)x cos(n+2)x
sin nx sin(n+1)x sin(n+2)x is independent of
A) n. B) a C) x D) none
37) If ∆₁= 1 1 1 & ∆₂= 1 bc a
a b c 1 ca b
a² b² c² 1 ab c then A) ∆₁ +∆₂= 0. B) ∆₁+2∆ = 0 C) ∆₁+ ∆₂ D) none
38) Dₖ = 1 n n
2k n²+n+2 n²+n
2k-1 n² n²+n+2 and ⁿₖ₌₁∑ Dₖ = 48, then n equals
A) 4. B) 6 C) 8 D) none
39) Let x²+ 3x x-1 x+3
x+1 -2x x-4
x-3 x+4 3x
= ax⁴ + bx³+ cx² + dx+ e be an identity in x, where a, b, c, d, e are independent of x. Then the value of e is
A) 4 B) 0. C) 1 D) none
40) using the factor theorem it is found that a+b, b+c and c+a are three factors of the determinant
-2a a+ b a+ c
b+a -2b b+c
c+a c+b -2c The other factor in the value of the determinant is
A) 4. B) 2 C) a+b+c D) none
41) if a,b,c are distinct, then the value of x satisfying
0 x²-a x³- b
x²+a 0 x²+ c = 0 is
x⁴+ b x- c 0
A) c B) a C) b D) 0
42)
43)
44)
45)
46) The value of 5² 5³ 5⁴
5³ 5⁴ 5⁵
5⁴ 5⁵ 5⁶ is
A) 5² B) 0 . C) 5¹³ D) 5⁹
47)
48)
49)
50) If A is an invertible matrix, then which of the following is not true
A) (A²)⁻¹= (A⁻¹)² B) |A⁻¹|= |A⁻¹|.
C) (A')⁻¹= (A⁻¹)' D) |A| ≠ 0
51) If A is an invertible matrix of order 3, then which of the following is not true
A) |adj A|= |A|² B) (A⁻¹)⁻¹= A
C) If BA= CA, then B= C, where B and C are square matrices of order 3.
D) (AB)⁻¹= B⁻¹A⁻¹, where B= [bᵢⱼ]₃ ₓ ₃ and |B| ≠ 0
52) If A= 3 4 & B= -2 -2
2 4 0 -1 then (A+B)⁻¹=
A) is a skew-symmetric matrix
B) A⁻¹+ B⁻¹ C) does not exist D) n.
53) If S= a b
c d then adj A is
A) -d -b B)d -b C) d b D) d c
-c a -c a. c a b a
54) If A is a singular matrix, then adj A is
A) non-singular B) singular.
C) symmetric D) not defined
55) If A, B are two n x n non-singular matrices, then
A) AB is non-singular.
B) AB is singular
C) (AB)⁻¹= A⁻¹B⁻¹
D) (AB)⁻¹ does not exist
56) If A= a 0 0
0 a 0
0 0 a then the value of |adj A| is
A) a²⁷ B) a⁹ C) a⁶. D) a²
57) 1 2 -1
If A= -1 1 2
2 -1 1 then det(adj(adj A)) is
A) 14⁴. B) 14³ C) 14² D) 14
58) If B is a non-singular matrix and A is a square matrix, then det(B⁻¹ AB) is equal to
A) Det (A⁻¹) B) Det (B⁻¹)
C) Det (A). D) Det (B)
59) For any 2 x 2 matrix, if A(adj A) = 10 0
0 10 then |A| is equal to
A) 20 B) 100 C) 10. D) 0
60) If A⁵ = O such that Aⁿ for 1≤n ≤ 4, then (I - A)⁻¹ equals
A) A⁴ B) A³ C) I+ A D) none.
61) If A satisfies the equation x³ - 5x³ + 4x + K= 0, then A⁻¹exists if
A) K≠ 1 B) K≠2 C) K≠-1 D) none.
62) If for the matrix A, A³ = I, then A⁻¹=
A) A². B) A³ C) A D) none
63) If A and B are square matrices such that B= - A⁻¹BA, then (A+ B)²
A) O. B) A²+ B². C) A²+2AB+B² D) A+B
64) 2 0 0
0 2 0
0 0 2 Then A⁵ is
A) 5A B) 10A C) 16A. D) 32A
65) For non-singular square matrix A, B and C of the same order (AB⁻¹C)=
A) A⁻¹BC⁻¹ B) C⁻¹B⁻¹A⁻¹
C) CBA⁻¹ D) C⁻¹BA⁻¹.
66) 5 10 3
the matrix -2 -4 6
-1 -2 b is a singular matrix, if the value of b=
A) -3 B) 3 C) 0 D) non-existent.
67) If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is
A) dⁿ B) dⁿ⁻¹. C) dⁿ⁺¹ D) d
68) if A is a matrix of order 3 and |A| = 8, then |adj A|=
A) 1 B) 2 C) 2³ D) 2⁶.
69) If A² - A + I= 0, then the inverse of A is.
A) A⁻² B) A+ I C) I - A. D) A - I
70) if A and B are invertible matrices, which of the following statement is not a correct.
A) adj A= |A| A⁻¹
B) det(A⁻¹)= (A)⁻¹
C) (A+B)⁻¹ = A⁻¹+ B⁻¹.
D) (AB)⁻¹ = B⁻¹A⁻¹
71) If A is a square Matrix such that A² = I, then A⁻¹ is equal to
A) A+ I B) A. C) 0 D) 2A
72) Let A= 1 2 & B= 1 0
3 -5 0 2 and X be a matrix such that A= BX, then X is equal to
A) 1 2 B) -1 2 C) 2 4
3 -5. 3 5 3 -5 D) n
73) If A= 2 3
5 -2 be such that A⁻¹ = kA, then k equal to
A) 19 B) 1/19. C) -19 D) -1/19
74) If A= 1/3 1/3 2/3
2 1 -2
x 2 y is orthogonal, then x+y=
A) 3 B) 0 C) -3. D) 1
75) if A= 1 0 1
0 0 1
a b 2 then aI + bA + 2A² is
A) A B) -A C) ab A D) none .
76) If A= 1 - tan x & B= 1 tanx
tanx 1 -tanx 1 and C= a - b
b a and relation of A B⁻¹= C then
A) a=1, b= 1
B) a=cos 2x , b= sin 2x.
C) a=sin 2x, b= cos 2x D) n
77) If a matrix A is such that 3A³ + 2A² + 5A + I= 0, then A⁻¹ is
A) -(3A² + 2A + 5)
B) (3A² + 2A + 5)
C) (3A² - 2A - 5) D) none .
78) If A is an invertible Matrix, then det A⁻¹ is equal to
A) det(A) B) 1/det(A). C)1 D) n
79) If A= 2 -1
3 -2 then Aⁿ=
A) A= 1 0
0 1 if n is an even natural number.
B) A= 1 0
0 1 if n is an odd natural number
C) A= -1 0
0 1 if n belongs to N
D) none
If B is a symmetric matrix, write whether the matrix AB A' is symmetric or Skew-symmetric.
26) If A is a skew-symmetric and n ∈ ℕ such that (Aⁿ)ᵀ = K Aⁿ, write the value of K.
27) If A is a symmetric matrix and n∈ ℕ, write whether Aⁿ is symmetric or Skew-symmetric or neither of these two.
28) if A is a symmetric matrix and n is an even natural number, write whether Aⁿ is symmetric or Skew-symmetric or neither of these two.
29) If A is a skew-symmetric matrix and n is an odd natural number, write whether Aⁿ is symmetric or Skew-symmetric or neither of these two.
30) If A and B are symmetric matrices of the same order, write whether AB - BA is symmetric or Skew-symmetric or neither of these two.
31) write a square matrix which is both symmetric as well as skew symmetric.