Monday, 18 May 2020

FUNCTION

                  FUNCTION



DEFINITION:

A function is s relation in which no two different ordered pairs have the same first component.


Definition:

Let A and B be two non-empty sets and f is a relation which associates each element of set A with unique element of set B. This relation is called function and it is denoted by f: A -> B.


Essential requirements for the definition of a function :


A function f : A -> B is defined under the following conditions:

1) Every x ∈ A is associated with some y in B, i.e., a function is defined only when the domain is entirely  "used up". 

  The set B may not be entirely "used up" by the function.

2) The function may associate more than one x to the same y.

3) No element in A should have more than one image in B.


Domain:

The domain of y= f(x) is a set of all real x for which f(x) is defined (real)


Range:

Range of y= f(x) is collection of all outputs {f(x)} corresponding to each real number in the domain.


* FOR FUNCTION f: A -> B;

• Set A is called the domain of the function f and B is called the co-domain of f.

• If a  ∈ A, then the elements in B which is assigned to  ' a ' is called the image of 'a' and denoted by f(a)

EXAMPLE:

Let A={ a, b, c, d}

       B={1, 2,3,4,5}

Relation of A to B is

f={(a,2),(b,3),(c,5),(d,1)}

Then Domain of f= {a,b,c,d}

Co-domain of f= {1,2,3,4,5}

Range of f= {2,3,5,1}


NUMBER OF FUNCTION:

• Number of function from 

A to B= nᵐ [ m is the number of elements in setA and n is the number of elements in set B]


TYPES OF FUNCTIONS :


Type                 Mathematical Form


• Even Function.   f(- x)= f(x)


• Odd Function.   f(- x)= - f(x)


• Modulus Function (Absolute value Function)

   • y= |x|= x,  x≥0

              -x,  x<0

   • |x±y| ≤ |x|+  |y|

   • |x±y| ≥ | |x| -  |y| |


 • Greatest Integer function ( Floor function)

  [x]=n, n≤x<n+1, n ∈I. [x]  indicates

  the Integral part of x which is  

  nearest and smallest integer 

  to x.

      • [x]= x; if x ∈ I

      • [x+I] = [x] +I; I is a integer

      • [x]+[- x]= - 1,  if x ∉ I

                           0,  if x  ∈ I

      • [x] - [- x] = 2[x] + 1, if x  ∉ I

                          2[x],        if x ∈ I

      • [x]≥ I => x ≥I, where I is an

              integer.

      • [x] ≤ I => x < I + 1, where I

              is an integer.

      • If [x] > n => x≥ n +1; n ∈ I

      • If [x] < n => x< n; n ∈ I

      • [x] = - [x], if x ∈ I

      • [- x] = - [x] - 1, if x ∉ I


•Smallest Integer Function (Ceiling function)  

      f[x] = [x] ∀ x ∈ I

    •  [n]= - [n]; where n ∈ I

    • [- x] = - [x] +1; where x  ∈ R - I

    • [x+n] = [x] +n ; where x ∈ R - I

          and n  ∈ I

    • [x]+[- x]=  1, if x ∉ I

                        0,  if x  ∈ I

    • [x]+[- x]= 2 [x] - 1,  if x ∈ I

                      2 [x],  if x ∈ I


• One-one Function (Injective Function).   


  A Function f: A -> B is said to be      one-one Function if different elements of set A have different

images in set B.

 • Number of one-one  functions 

  = ⁿ⁽B⁾ P ₙ₍A₎ , if n(B) ≥ n(A) and 0,

 if n(B) < n(A).


• Onto Function (Surjective Function)

      

  • A function f: A -> B is said to be onto Function if every every element of B is the f - image of some element of A.

  • Range of f= co-domain of f

  • Number of onto function from

    A to B.

    = ⁿᵣ ₌ ₀ ∑ (-1)ⁿ ⁻ ʳ  ⁿCᵣ r ᵐ, where

     A and B are two sets having m

     and n elements respectively.

   • n(A)= n(B), then number of   

      onto function (n(A)) !


• Many - One Function

       

   • A function f: A -> B is said to be Many-One function if two or more

elements in A have the same image in B.

   • Number of elements in many one from A to B = 

(n(B)ⁿ⁽A⁾ - ⁿ⁽B⁾ P ₙ₍A ₎.


• Into Function     


     • A function  f: A ->B is an into function if there exist an element in B having no pre-image in A.


• One-One Onto Function (Bijective Function).     


     • A function f : A - > B is a

       bijection if it is one-one as

       well as onto.

      • Number of bijections from 

         A to B = (n(A)) !


• Inverse Function.  


     • If a function f: A - > B then

       f ⁻¹ : B -> A such that

       f ⁻¹(b)= a => f(a)= b.

     • f is invertible if it is one-one &

        onto.

     • If f(x) = 4x +3 then 

       f ⁻¹(x)= (x -3)/4


• Equal Functions. 


     • Two functions f and g are to

        be equal if they have the

        same domain, range & they

        satisfy the condition

         f(x)= g(x) ∀ x ∈ domain.


• Composite Function


       • Let A, B, C be three non - void sets. f : A -> B, g : B -> C be two Functions, then the Function gof : A -> C defined by 

gof(x) = g(f(x)) ∀ x ∈ A called composite function of f and g.

      • f : A -> B, g : B -> C & h: C->D, then the composite functions 

gof: A -> C & then h: C -> D, then ho(gof) : A -> D is composite function of three functions.

      • The composition of functions is not Commutative i.e., fog ≠ gof. 

      • The composition of functions is associative i.e., f, g, h are three functions such that (fog)oh and fo(goh) exist, then 

      (fog)oh = fo(goh) 

     • The composition of two bijections is a bijection.

     • The composition of any Function with the identity function is the function itself.



Section I




ILLUSTRATIVE EXAMPLES :


Example . 1:

If f(x) = 3x -2; find (i) f(-1) , (ii) f(2), (iii) f(1/2), (iv) f(x +2), (v) (x²+1)


Solution:

i) We have f(x)= 3x - 2

Replacing x by  -1 we get 

f(-1)= 3(-1) - 2

       = - 3 - 2

       = -5

ii) We have f(x)= 3x - 2

Replacing x by 2 we get

f(2)= 3(2) - 2

      = 6 - 2

      = 4

iii) We have f(x)= 3x - 2

Replacing x by 1/2, we get

f(1/2)= 3(1/2) -2

          = 3/2 - 2

          = - 1/3

iv) We have f(x)= 3x - 2

Replacing x by (x+2), we get

f(x+2)= 3(x+2) - 2

          = 3x + 6 - 2

          = 3x +4

v) We have f(x)= 3x - 2

Replacing x by (x² +1), we get 

f(x²+1)= 3(x²+1) - 2

            = 3x² +3 - 2

            = 3x² +1


Example . 2:

If f(x)= (1-x)/(1+x) find f(1/x)       

                                               (2009)

Solution:

We have f(x)= (1-x)/(1+x) 

Replacing x by 1/x, we get

f(1/x)= (1 - 1/x)/(1+ 1/x)

          = {(x -1)/x}/{(x+1)/x

          = (x -1)/(x+1)


Example . 3:

If f(x)= (1-x)/(1+x) find f{f(1/x)} 

                                             (2013)

Solution:

We have f(x)= (1-x)/(1+x) .........(1)

Replacing x by (1/x), we get

f(1/x)= (1 - 1/x)/(1+ 1/x)

          = {(x -1)/x}/{(x+1)/x

          = (x -1)/(x+1)

Again replacing x by {(x-1)/(x+1)} in (1) we get,

f{(x -1)/(x+1)}= [1 - (x -1)/(x+1)]/[1+(x -1)/(x+1)]

= (x+1-x+1)/(x+1+x-1)

= 1/x


Example . 4:

If f(x)= (ax+b)/(bx+a)  prove f(x). f(1/x) = 1   

      (1990,2009,2010,2012, 2014)


Solution:

We have f(x)= (ax+b)/(bx+a)

Replacing x by 1/x, we get,

f(1/x)= {a(1/x) +b}/{b(1/x) +a}

          = (a + bx)/(b+ ax)

So f(x). f(1/x)= (ax+b)/(bx+a) . 

(a + bx)/(b+ ax)

 = 1.    (Proved)


Example .5 :

If f(x)=x²-x then prove f(h+1)= f(-h)        (1997,2007,2009,2010,2013, 2015

Solution:

We have f(x)=x²-x

L.H.S

Replacing x by (h+1) , we get

f(h+1)= (h+1)² - ( h +1)

= h² +1 +2h - h - 1

= h² +h

R. H. S

Replacing x by - h , we get

f(-h) = (-h)² - (-h)

        = h² + h

So L. H. S = R. H. S.      (Proved)


Example . 6:

If f(x)= e ᵃˣ ⁺ᵇ prove  that

eᵇ f(x+y)= f(x) . f(y)              (1988)


Solution:

We have f(x)= e ᵃˣ ⁺ᵇ 

L. H. S 

Replacing x by (x+y), we get

f(x+y)= e ᵃ⁽ˣ⁺ʸ⁾ ⁺ ᵇ

          =  e ᵃˣ⁺ᵃʸ⁺ ᵇ

and eᵇ f(x+y)= eᵇ(e ᵃˣ⁺ᵃʸ⁺ ᵇ)

                       = e ᵃˣ⁺ ᵃʸ ⁺ ²ᵇ

R. H. S

Replace x by y, we get

f(y)= e ᵃʸ⁺ ᵇ

And f(x) . f(y) = e ᵃˣ ⁺ᵇ. e ᵃʸ⁺ ᵇ

                        =  e ᵃˣ⁺ ᵃʸ ⁺ ²ᵇ

L. H. S = R. H. S.      (Proved)


Example. 7 :

If f(x)= (2x+1)/(2x²+1) and θ(x)= 2f(2x) then find θ(2.5)        (1995)


Solution:

We have f(x)= (2x+1)/(2x²+1)

Replacing x by 2x, we get

f(x)= {2(2x) +1}/{2(2x)² +1}

= (4x +1)/(8x² +1)

Therefore, θ(x)= 2f(2x) ={2(4x +1)/(8x² +1).

Now replacing x by 2.5, we get

= [2{4(2.5) +1}]/[8(2.5)²+1}]

= 2(11)/{8(6.25)+1}

= 22/51


Example . 8:

If y= f(x)= (ax+b)/(cx -a) then prove f(y) = x      (2005,2008,2012)


Solution:

We have y=  (ax+b)/(cx -a)  ....(1)

 and  f(x)= (ax+b)/(cx -a) ....... (2)

Replacing x by y in (2) we get,

f(y)= (ay+b)/(cy - a)

     = a.{(ax+b)/ (cx - a)   + b}/{c. (ax + b)/(cx - a)  - a}. (Putting the value of y from. (1)

=(a²x+ab+bcx-ab)/(acx+bc-acx+a²)

= (a²x + bcx)/(bc +a²)

= x(a² + bc)/(a² +bc)

= x.    (Proved)


Example. 9)

If f(x+3)= 3x²-2x +5 then find f(x-1)                            

                                      (1996, 2012)

Solution:

We have f(x+3)= 3x²-2x +5 ....(1)

Replacing x by (x -4) we get,

f(x - 4+3)= 3(x-4)²- 2(x-4)+5

       f(x-1)= 3(x²+16-8x) -2x+8 +5

                 = 3x²+48 -24x - 2x +13

       f(x -1)= 3x²- 26x +61




Alternative method:

We have   f(x+3)= 3x²-2x +5 ....(1)

Let (x+3)= y

Then x= y - 3 

So, f(y)= 3(y-3)² -2(y-3) +5

       f(y)= 3(y²+9-6y) -2y+6+5

       f(y)= 3y²+27-18y - 2y +11

       f(y) = 3y² - 20y +38

Now replacing x by (x-1), we get

f(x-1)= 3(x-1)²- 20(x-1) +38

         = 3(x²+1-2x) - 20x +20 +38

         = 3x²+3 - 6x -20x+58

         = 3x² - 26x +62


Example . 10)

If f: x -> log₃(x² +2x +3), find f(4).


Solution :

We have f: x -> log₃(x² +2x +3)

Replacing x by 4, we have

f(4)= log₃(4² +2.4 +3)

      = log₃27

      = 3 log₃3

      = 3 . 1

      = 3


Example 11:

If y = f(x)= (2x +1)/(3x - m) and f(y) = x, find m.


Solution:

We have

f(y) =x  Or, (2y+1)/(3y - m)= x

             Or, 2y+1= 3xy - mx

             Or, 2y +mx= 3xy -1

             Or, y(2+m)= my +1

           So, y= (my+1)/(3x -2). .....(1)

Again, it is given that

y= (2x +1)/(3x - m).        ..........(2)

Thus, from (1) and (2) we get

(mx +1)/(3x -2)= (2x +1)/(3x - m)

Comparing both sides we get, m=2


Example . 11:

If f(x) = | x | - 3x , find f(-2)  (2007)


Solution:

We have f(x) = | x | - 3x 

Replacing x by (-2) we get,

f(-2)= | 2 | - 3(-2)

       = 2 +6

       = 8


Example 12 :.             (2008/2017)

If f(x)= | x | - [x], where [x] is the greatest integer not exceeding x, then find the values 

i) f(2.5)

ii) f(-2.5).


Solution)

We have, [x]=2 when 2≤ x < 3 and [x]= - 3 when - 3≤ x < - 2

And | x | =   x when x ≥ 0

                  - x when x < 0

Now we have  f(x)= | x | - [x]

i) Replacing x by 2.5 we get,

    f(2.5)=  | 2.5 | - [2.5]

              = 2.5 - 2

              = 0.5

ii) Replacing x by - 2.5 we get,

    f(- 2.5) =  | - 2.5 | - [- 2 5]

                 = 2.5 - (- 3)

                 = 2.5 +3

                 = 5.5


Example 13)            (2005/2019)

If f(x)= (eˣ -1)/(eˣ+1) and               θ(x)= {1+ f(x)}/{1 -f(x)}   then prove that θ(x +y)= θ(x) . θ(y)       


Solution)


We have,

f(x)= (eˣ -1)/(eˣ+1).  ………….(1)

And

θ(x)= {1+ f(x)}/{1 - f(x)}

   = {1+ (eˣ -1)/(eˣ+1)}/{1-(eˣ -1)/(eˣ+1).                 {putting (1)}

  = {(eˣ +1+eˣ -1)/(eˣ +1)}/{eˣ+1-eˣ+1)/(eˣ+1)}

= {2eˣ/(eˣ +1)}/{2/eˣ+1)}

= eˣ

so we get θ(x) = eˣ …………(2)

Again θ(x+y)= eˣ⁺ʸ       L.H.S

and θ(x) . θ(y)= eˣ . eʸ

                   = eˣ⁺ʸ      R.H.S (proved)


Example 14)                   (2019)

If f(x)=logₑ{(1+x)/(1-x)} Then prive that f{2x/(1+x²)} = 2 f(x)


Solution)

We have 

f(x)=logₑ{(1+x)/(1-x)

L.H.S

f{2x/(1+x²)}= logₑ[{1+ 2x/(1+x²)}/{1 - 2x/(1+x²)}]

  = logₑ [{(1+x²+2x)/(1+x²)}/{(1+x²-2x)/(1-x²)}]

 = logₑ[(1+x)²/(1-x)²]

 = logₑ[(1+x)/(1-x)]²

 = 2 logₑ[(1+x)/ (1-x)]

 = 2 f(x)

 = R.H.S.                     (Proved)


Example 15)                      (2018)

If f(x)= {(2x+1)/(2x²+1)} and 

g(x)= 2 f(2x) then find g(2.5)


Solution)

We have 

f(x)=(2x+1)/(2x²+1)} 

f(2x)= (2.2x +1)/(2.(2x)²+1)

       = (4x+1)/(8x²+1)


Again  g(x)= 2 f(2x)

So,            =2{(4x+1)/(8x²+1)} (Ans)


Again g(2.5)= 2{(4(2.5)+1)}/{(8(2.5)²+1)}

 =2(10+1)/(50 +1)

  = 22/51                         (Ans)


            

              EXERCISE 1.1


1) If f(x)= (x²-4)/(x - 2) find

i) f(1)

ii) f(2)


2) If f(x)= 4x² + 2x - 3 find

{f(x+h) - f(x)}/h


3) If f(x)=  log₂(x²+3x+4) find

i) f(1)

ii) f(4)


4) 13) If y= f(x) = (x+1)/(x+2) then find a) f(y)

b) f{f(1/x)}                    (1992,2009)


5) If f(x)= (1-x)/(1+x) find the value of {f(x+h) -f(x)}/h        (1998)


6) If f(x)= (x-1)/(x+1) then prove {f(a).f(b)}/{1+f(a)f(b)}=(a-b)/1+ab)

                           (1993, 1994, 2013)


7) If f(x)=(ax -b)/(bx-a) then prove f(a). f(1/a) - f(b). f(1/b) = 0 

                                                 (2007)

8)a) If f(x)= (2x² - 3x +4), for what value of x is 2f(x)= f(2x).   (2016)


b) If f(x)= 2x² - 5x +4, for what value of x is 2f(x)= f(2x) ?   (2005)


c) If f(x)= log x, prove 

    f(a)+ f(b) = f(ab).             (2011)



9) If y = f(x)= (3x +4)/(5x - m) and f(y) = x, find m.



11) f(x)= e ᵖˣ⁺ᵐ , Show that 

 f(a). f(b). f(c)= f(a+b+c)²ᵐ


12) y= f(x)= (x+1)/(x+2)   

Find i) f(y).    ii) f{f(1/x)}.   (1992)


13) If y = f(x)= (2 - x)/(5+3x) and 

z= f(y), express z in terms of x.


14)  If f(x +2)= 5x² -3x +2, find the value of f(x -2).                      (2015)


15) If f(2x -1)= (3x -1)/(x+1) find

i) f{ f(4)}

ii) f(1 - 3x)


16) If f(x)= (3x +1)/(x -1),

 find f(2-x)


17) Given f(x)= x+2 and g(x)= (x²-4)/(x-2), when f(x)= g(x) ? Give reasons for your answer.   (2016)


18) f(x)= (x²-5x+6)/(x²-8x+12) Show f(2) is not defined and also find f(-5).                               (1988)           




Answer)

1) i) 3, ii) unidentified

2) 2(4x +2h +1)

3) i) 3 ii) 5

4) i) (y+1)/(y+2).ii) (3x+2)/(4x +3)

5) - 2

7) (7x +8)/(12x +31)

8) a) ± 1.        b) ±1

9) 3

12) i) (y+1)/(y+2) ii) (2x+3)/(3x+5)

13) (8+7x)/(31+12x)

14) 5x² - 43x +94

15) i) 51/49     ii) (4-9x)/(4-3x)

16) (7-3x)/(1-x)

17) f(x)= g(x), when x≠ 2

18) 8/11





Section II


Domain 

----------


Tips for finding the domain of a function :


1. Algebraic Functions :

    (i) Denominator should be non-zero.

    (ii) Expression under the even root should be non-negative.


2. Logarithmic function:

      Log ₓy is defined when x > 0, 

         y > 0 and y ≠ 1.


3. Exponential Function:

     a ˣ and e ˣ are defined for all real values of x, where a > 0 

and e > 0.



ILLUSTRATIVE EXAMPLES :


Example. 1 :

Find the domain of the defination

(x²-5x+6)/(x²-8x+12).       (2002)


Solution:

Let f(x)= (x²-5x+6)/(x²-8x+12)

Clearly, f(x) will be undefined if x²-8x+12=0

i.e., If x² - 6x - 2x +12=0

i.e., If x(x - 6) - 2(x - 6)=0

i.e., if (x - 6)(x - 2)=0

i.e., if x=6 or,.x= 2

Therefore, the domain of defination of f(x) is - ∞ < x< ∞ but x≠ 6 and x≠2


Example .2)

Find the domain of defination

√(x² +x -12).              (2001, 2013)


Solution:

Let f(x)= √(x² +x -12)

Now, (x² +x -12) 

= x² +4x - 3x - 12

= x(x +4) - 3(x + 4)

= (x+4)(x - 3)

So f(x)= √{(x+4)(x - 3)}

Clearly, (x+4)(x+3) ≥0 when x≤-4 or, x≥3

And clearly

 (x+4)(x+3) < 0 when - 4 < x < 3

Hence, it follows that f(x) is real when x≤4 or, x ≥3 and it is imaginary when - 4 < x < 3 .

Therefore, the domain of defination of f(x) is : 

x ≤ 4 , x ≥3 or - ∞ < x ≤ -4, 3≤x<∞


Example .3:

Find the domain of defination

(x+2)/√(x² - 9x)


Solution

Let f(x) = (x+2)/√(x² - 9x)

= (x+2)/√{x(x - 9)}

Clearly, the function f(x) will be defined when x(x - 9)>0

i.e., when x< 0 or, x> 9. Therefore, the domain of defination of f(x) is:

  x< 0, x > 9 or - ∞<x<0, 9< x< ∞


Example - 4:

Find the domain of defination

Log (x² - 7x +12).     (2000,2008)

Let f(x) = Log (x² - 7x +12)

Clearly, f(x) is defined when 

(x² - 7x +12) > 0 or, (x-3)(x-4)>0

It is readily seen that the condition is satisfied when x < 3 or, x > 4. 

Therefore, the required domain of defination of f (x) is, 

 - ∞ <x <3 or, 4 < x< ∞


Exampe 5)                       (2018)

Find tne domain of the definition of (x²+x+5)/(x²-6x+8)


Solution)

Clearly x² - 6x +8=

   Or,   x²- 4x -2x +8=0

   Or, x(x-4) - 2(x-4)=0

   Or, (x-4)(x-2)=0

either x=4 , x=2

So Domain of the function -α≺x ≺α

 excluded x=2 and x= 4      (Ans)






             EXCERCISE 1.2


Find the domain of defination of the following function :


1) (2x²-7x +6)/(3x² -7x+2).   (2015)


2) (x -1)/(x² - 5x +6)


3) √(x² - 7x +12)


4) √(x² -1)


5) x/√(x - 1).     (2016)


6) (x+2)/√(x²- x -2).   (1994)


7) (4x -5)/√(x² - 7x +12).   (1998/19)


8) 5/√{(x+1)(x -3)}.     (2004)


9) √(x -3) + √(7 - x)


10) (3x - 7)/√(4 - x²)         (2011)


11) x/(x² -9)                        (2017)



Answers)

1) ( - ∞, 1/3)∪(1/3, 2)∪ (2,∞)

2) R - {2, 3}

3) x ≤3 and x ≥ 4

4) x ≤ - 1 and x ≥ 1

5) x > 1 or 1 < x < ∞

6) - ∞ ≤x < -1, 2 ≤ x < ∞

7) - ∞ < x < 3, 4 < x < ∞

8) - ∞ < x < -1, 3 < x ∞

9) 3 ≤ x ≤ 7

10) -2 < x < 2 

or - ∞ <x< -2,2< x <∞



Section III


Range

--------


Method for finding the range of a function y = f(x).


Step 1. Find the domain of the

             function y = f(x).

Step 2. Solve the equation y = f(x) 

             to find x in terms of y. Find

             the real values of y for

             which x is real.

The set of values of y so obtained makes up the range of f.


* NOTE

To find the real values we have to use the formula b² - 4ac = 0 where a, b, c are the constant from quadratic equation ax²+ bx +c = 0


                          

      ILLUSTRATIVE EXAMPLES :



Example 1)

Find the Range of the function

x/(1+x²).                            (2006)


Solution :

 Let y = x/(1+x²)

Or, x²y + y = x.     ..........(1)

Or, x²y - x + y =0

Or, x = {1±√(1 - 4y²)}/2y

Since x is finite and real, we have,

y≠ 0 and 1 - 4y² ≥ 0

Or, (1 -2y)(1+2y) ≥0

Or,  - 1/2 ≤ y ≤ 1/2

Also, from (1) we see that y= 0 when x=0.

Therefore, the required range of the given function is 

 -1/2 ≤ y ≤ 1/2.


Example . 2) 

Find the range of √(3x² - 4x +5)


Solution: 

Let y =√(3x² - 4x +5)

=> y² = (3x² - 4x +5)

=> 3x² - 4x + (5 - y²) =0

=> For x to be real, b² - 4ac = 0

Do (-4)² - 4.3.(5-y²) ≥0

=> y ≥ √(11/3)

So Range of y = [√(11/3 , ∞}



            EXERCISE 1.3


Find the Range of the following:


1) 2x/(4 +x²).               (2003)


2) √(x - x²)


3) x²/(1 + x²)


4) (3x² - 2x +12)/(x² +2x +4)


5) (x² -4)/(x - 2)


Answer) 

1) - 1/2 ≤ y < 0 and 0 < y ≤ 1/2

2) - 1/2 ≤ y ≤ 1/2

3) [0, 1)

4) [ 7/3, 5]

5) - ∞ < y < 4



Section IV


Odd and Even Function

--------------------------------


A function f(x) is said to be an odd function if f(- x)= - f(x). Then, It is odd function.

A function f(x) is said to be an even function if f(- x)= f(x). Then it is even Function.


Example 1).                       (2001)

Prove that log[√(1+x²) - x} is an odd funtion of.x.


Solution)

Let f(x)= log{√(1+x²) - x}

      f(-x)= log[√{1+(-x)²} - (-x)]

       = log{√(1+x²) +x}

Rationalising

=log [{√(1+x²) +x}{√(1+x²) -x}/√(1+x²) -x}]

    = log[1/{√(1+x²) -x}]

  = log 1 - log {√(1+x²) -x}

  = 0 - f(x)

  = - f(x)

Hence, f(x) is an odd function of x


Example 2) show that 3x² + 5x⁴ -3 is a even function.


Solution

Let f(x)= 3x² + 5x⁴ -3 

then, f(-x)= 3(-x)² + 5(-x)⁴ -3

                = 3x² + 5x⁴ -3

                = f(x)

Hence, f(x) is an even function of x.


Example 3)                       (2018)

Show that the function 

x{(3ˣ-1)/(3ˣ+1)} is even


Solution)

Let f(x)= x{(3ˣ-1)/(3ˣ+1)}

      f(-x)= -x{(3⁻ˣ-1)/(3⁻ˣ+1)}

            = -x{(1/3ˣ -1)/(1/3ˣ+1)}

            =  -x{(1 - 3ˣ)/(1+ 3ˣ)

           = -x{-(3ˣ-1)/(3ˣ+1)}

           = x{(3ˣ-1)/(3ˣ+1)

           = f(x)

Hence, f(x) is an even function of x.


                   Exercise


1) Show that x +x³ is an odd function.


2) If f(x)= {(1+eˣ)/(1 - eˣ)} , then show that f(x) is an odd function.

                                           (2006)

3) If f(x)= {(eˣ+1)/( eˣ- 1)} , then show that f(x) is an even function.


4) If 5ˣ - 5 ⁻ˣ , then show it is even function.


5) log{(1 -x)/(1+x)} show it is even function


6) log{√(1+x²) +x} show that it is even function.











No comments:

Post a Comment