Sunday, 26 December 2021
INTEGRATION (COMPETITION)
Tuesday, 21 December 2021
SPECIAL INTEGRAL(XII)
Friday, 17 December 2021
LOGARITHM (A- Z) C
EXERCISE - A
**Convert in to logarithmic form:
1) 6⁻¹ = ⅙ is
A) log₆(1/6)= 1 B) log₆(1/6)= -1
C) log₆6= 1 D) none
2) ³√(27) =3 is
A) log 27¹⁾³= 3 B) log₂₇3 = 1/3
C) log₂₇3= 1/3 D) log₂₇(1/3)= 3
3) 2⁵= 32 is..
A) log₂32= 5 B) log₂5= 32
C) log₅32= 2 D) log₅2= 32
4) 2⁰= 1 is..
A) log₁2= 0 B) log₂1= 0
C) log₁0 =2 D) log₂0=2
5) ³√64= 4 is..
A) log₆₄4= 1/3 B) log₄64= 1/3
C) log₃64= 1/4 D) log₃4= 64
6) 8⁻²⁾³ = 1/4 is...
A) log₈(1/4)= -2/3
B) log₈(-1/4)= 2/3
C) log₈(2/3)= -1/4
D) log₈(-2/3)= 1/4
7) 10⁻² = 0.01 is..
A) log₁₀(0.01) = 2 B) log₁₀(0.01) =-2
C) log₂(0.01)=10 D) log₂(0.01) = 0.1
8) 4⁻¹= 1/4 is..
A) log₄(1/4)= 1
B) log₄(1/4)= -1
C) log₁(1/4)= 4
D) log₁4= 1/4
EXERCISE - B
**Convert into Exponential form:
1) log₅(625) = 4 is..
A) 5⁴= 625 B) 4⁵= 625 C) 5/4= 625 D) n
2) log√₃ 27= 6 is...
A) (√3)²⁷=6 B) (√3)⁶=27 C) 3²⁷=2 D) 3²⁷= √2
3) log₄(4) = 1
A) 1⁴= 4 B) 4⁴= 0 C) 4⁴= 1 D) 4⁰=1
4) log√₅ 625= 8 is
A) √5= 625 B)(√5)⁸= 625 C) 5=√625 D)n
5) log₂(1/32)= -5 is..
a) 2⁵=32 b) 2⁻⁵=1/32 v) 1/2⁵= 1/32 d) n
EXERCISE - C
** Find the Value of:
1) log₃(81) is
A) 1 B) 2 C) 3 D) 4
2) log₁₀³√(100) is
A) 1/3 B) 2/3 C) 10 D) 1
3) log₂(1/32) is..
A) 5 B) 1/5 C) 1/2 D) 2
4) log₉(27) is..
A) 1/2 B) 2/3 C) 1/3 D) √3
5) log₇343 is .
A) 7 B) 3 C) 7/3 D) 3/7
6) Log₂64 is..
A) 2 B) 4 C) 6 D) 8
7) log₈32 is..
A) 5 B) 5/2 C) 5/3 D) 5/4
8) log ₃(1/9) is...
A) 1 B) -1 C) 2 D) -2
9) log₀·₅(16)
A) 2 B) -2 C) 4 D) -4
10) log₂(0.125) is..
A) -1 B) -2 C) -3 D) -4
11) log₇7 is.
A) 0 B) 1 C) -1 D) none
12) log₅√₅125
A) 2 B) 4 C) 6 D) 8
EXERCISE - D
** Find the value of x if..
1) log₃(x)= 4
A) 3 B) 9 C) 17 D) 81
2) log₂₅(x)=-1/2
A) 5 B) -5 C) 1/5 D) -1/5
3) log₁/₂(x)= -3
A) 8 B) 1/8 C) 4 D) 2
4) x=log₁₀(0.001)
A) 3 B) -3 C) 1/3 D) -1/3
5) log₂₅(x) = -½
A) 5 B) 1/5 C) -5 D) -1/5
6) logₓ(243) = 5
A) 3 B) 5 C) -3 D) -5
7) log₂x=-2
A) 4 B) 1/4 C) -4 D) -1/4
8) logₓ9 = 1
A) 1 B) 9 C) 3 D) 1/9
9) log₉243= x
A) 2 B) 5 C) 2/5 D) 5/2
10) log₃x= 0
A) 0 B) 1 C) 3 D) 1/3
11) log√₃(x-1)= 2
A) 1 B) -2 C) 3 D) 4
12) log₅ (x²-19)= 3
A) 12 B) -12 C) ± 12 D) none
13) logₓ64 = 3/2
A) 4 B) 8 C) 16 D) 2
14) log ₂ (x²- 9)= 4
A) 2 B) 16 C) 5 D) ±5
15) logₓ(0.008)= -3
A) 3 B) 5 C) ±5 D) -3
EXERCISE - E
1) The base when 2 is the logarithm of 9
A) 2 B) 9 C) 1 D) ±3
2) The base when 3 is the logarithm of 216 is.
A) 6 B) √6 C) 2 D) 3
3) The base when 6 is the logarithm of 49 is.
A) 7 B) √7 C) ³√7 D) 1/7
4) The base when (-1/6) is the logarithm of √5 is..
A) 0.8 B) 0.08 C) 0.008 D) 0.0008
5) the base, when 4 is the logarithm of 1296 is..
A) 6 B) -6 C) 1/6 D) 1
6) The base, when 6 is the logarithm of 343 is .
A) 7 B) -7 C) ±7 D) √7
7) The logarithms of 243 to the base 3 is..
A) 2 B) 3 C) 4 D) 5
8) The logarithms of 16 to the base 32 is :
A) 4 B) 5 C) 4/5 D) 5/4
9) The logarithms of 81 to the base ³√9 is..
A) 3 B) 4 C) 5 C) 6
10) If log 2= 0.31 then log 8 is.
A) 0.31 B) 0.62 C) 0 D) 0.93
11) If log 2= 0.642 then log 5 is
A) 0.1284 B) 0.358 C) 0.853 D) n
12) What is the base if the logarithm of 144 is 4 ?
A) 2 B) 3 C) √2 D) 2√3 E) none
EXERCISE - F
****Find the value of:
1) log 5+ log 20+ log 24 + log 25 - log 60 is
A) 0 B) 1 C) 2 D) 3 E) n
2) log 6+ 2log 5+ log 4 - log 3 - log 2 is
A) 0 B) 1 C) 2 D) 3 E) n
3) 2log 5+ log 8- 1/2 log 4 is
A) 0 B) 1 C) 2 D) 3 E) n
4) log 8+ log 25+2 log 3 - log 18 is
A) 0 B) 1 C) 2 D) 3 E) n
5) 5log 2+ 3/2log 25+ 1/2 log 49 - log 28 is
A) 0 B) 1 C) 2 D) 3 E) n
6)1/2 log 25 - 2log 3 +log 18 is
A) 0 B) 1 C) 2 D) 3 E) n
7) log 2 + 16 log(16/15) + 12 log(25/24) + 7 log(81/80) is..
A) 0 B) 1 C) 2 D) 3 E) n
8) log(81/8) - 2log(3/2) + 3log(⅔) + log(3/4) is
A) 0 B) 1 C) 2 D) 3 E) n
9) 7log(16/15)+ 5log(25/24) + 3 log(81/80) is
A) 0 B) 1 C) 2 D) 3 E) n
10) 2 log 2+ log 5 - 1/2 log 36 - log (1/30) is
A) 0 B) 1 C) 2 D) 3 E) n
11) log(1.2)+ 2 log (0.75) - log(6.75) is
A) 0 B) 1 C) 2 D) 3 E) n
12) log 5+ 16 log(625/6) + 12 log(4/375) + 7 log(81/1250) is..
A) 0 B) 1 C) 2 D) 3 E) n
13) 2log₁₀8 + log₁₀36 - log₁₀(1.5)
- 3 log₁₀ 2 is
A) 0 B) 1 C) log₁₀ 2 D) log₁₀ 32 E) n
14) 2 log₁₀5+ 2 log₁₀3 - log₁₀2 + 1 is..
A) 0 B) 1 C) log₁₀ 25 D) log₁₀ 1125
15) 2+ 1/2 log₁₀9 - 2 log₁₀5 is..
A) 0 B) 1 C) log₁₀ 2 D) log₁₀ 12 E) n
16) 1/2 log₁₀9 + 1/4 log₁₀81 + 2 log₁₀6 - log₁₀12 is .
A) 0 B) 1 C) log₁₀ 2 D) log₁₀ 7 E) log₁₀ 27
17) 2log₁₀(11/13) + log₁₀(130/77) - log₁₀(55/91) is .
A) 0 B) 1 C) log₁₀ 2 D) log₁₀ 20 E)n
18) 1 - 1/3 log₁₀64 is..
A) 0 B) 1 C) log₁₀ 2 D) log₁₀ 5 E) log₁₀ (2.5)
19) log(32/243) - log(16/75) - 2 log(5/9) is..
A) 0 B) 1 C) 2 D) 3 E) log 2
20) 7 log (15/16) + 6 log (8/3) + 5 log(2/5) + log (32/25)
A) 0 B) 1 C) log 2 D) log 3 E) log 5
21) {log√(27)+log(8)+log√(1000)}/ log(120)
A) 0 B) 1 C) 2 D) 3 E) 3/2
22) {log√(27) + log√(8) + log√(125)} /{log(6) + log(5)} is
A) 0 B) 1 C) 2 D) 3 E) 3/2
23) value of log₂√6+ log₂√(2/3) is
A) 0 B) 1 C) 10 D) 2 E) none
24) value of log 144 - log 90 + log (0.0625) is.
A) 0 B) 1 C) -1 D) 2 E) -2
EXERCISE - G
** Solve::
1) 1/2 log (11+4√7)= Log(2+x)
A) 7 B) √ 7 C) 0 D) 1 E) none
2) log(x+2) + log(x-2)= log 5.
A) 1 B) 2 C) 3 D) 0 E) none
3) log(x+4) - log(x- 4)= log 2
A) 0 B) 1 C) 2 D) 12 E) none
4) log(x+3) - log(x- 3)= 1.
A) 0 B) 1 C) 3 D) 11 E) 11/3
5) log(x² - 21) = 2.
A) 0 B) 1 C) ±2 D) ±11 E) 11/3
6) 2 logx + 1 = log 250.
A) 1 B) 2 C) 5 D) ±6 E) none
7) logx/log 5 = log 9/log(1/3).
A) 1 B) 2 C) 25 D) 1/25
8) log 7 - log 2 + log 16 - 2log 3 - log (7/45) = 1+ log x.
A) 0 B) 1 C) 3 D) 4.
9) log₁₀x - log(2x -1)= 1.
A) 1 B) 0 10 D) 19 E) 10/19
10) log₅(x²+x) - log₅ (x+1)= 2
A) ±1 B) ±3 C) ± 5 D) ± 6 E) 25
11) log₁₀5+log₁₀ (5x+1)=log₁₀(x+5) +1
A) 0 B) 1 C) 2 D) 3
12) log₂ log₃ log₂ x= 1.
A) 5 B) 1 C) 2 D) 512
13) logₓ (8x-3) - logₓ 4 = 2
A) 3/2 B) 1/2 C) 1 D) 4
14) (log₁₀x - 5)/2 + (13 - log₁₀x)/3 = 2
A) 0 B) 1 C) 2 D) 10
15) log₃ (3+x)+ log₃(8-x) - log₃(9x-8) = 2 - log ₃ 9.
A) 0 B) 2 C) 4 D) 6 D) 8
16) log₂x + log₂(x+4)= 5
A) 0 B) 1 C) 2 D) 3 E) 4
17) ₓˡᵒᵍ10ˣ = 100x.
A) 0 B) 1 C) 10 D) 100 E) none
EXERCISE - H
A) If log₁₀2=0.3010, and log₁₀3 =0.7781, log₁₀7= 0.8451 then
1) log₅(5) is
A) 0.6990 B) 0.6099 C) 9069 D) n
2) log₁₀(45)
A) 0.6532 B)1.6532 C) -0.6532 D) n
3) log₁₀(2.4)
A) 1.6811 B) 0.6811 C) 0.7781 D) n
4) log₁₀(6)
A) 2.7781 B) 0.7781 C) 1.7781 D) n
5) log₁₀(108)
A) 0.333 B) 1.333 C) 2.0333 D) n
6) log₁₀³√(5)
A) 0.2330 B) 1.2330 C) 2.2330 D)n
7) log₁₀(70)
A) 0.8451 B) 1.8451 C) 2.8451 D)n
8) log 84
A) 0.9242783 B) 1.9242793
C) 2.9242783 D) none
9) log (21.6)
A) 0.3344539 B) 1.3344539
C) 2.3343539 D) none
10) log(0.00693)
A) 0.840733 B) 1.840733
C) 2.840733 D) 3.840733
11) log 294
A) 0.4683473 B) 1.4683473
C) 2.4683473 D) 4.4683473
12) log√(4.5)
A) 0.3266063 B) 1.3266063
C) 2.3266063 D) 2.3266063
13) If log₁₀2=0.3010, log₁₀3=0.4771, then log₁₂40 is
A) 0.485 B) 1.485 C) 2.485 D) 3.485
14) If log₁₀3= 0.4771 then log₂₅125 is
A) 2 B) 3 C) 3/2 D) 2/3
15) If log₁₀3= 0.4771 then log₁₀3000 is..
A) 0.4771 B) 1.4771 C) 2.4771 D) 3.4771
B) if log 2 =0.3010 and log(3)= 0.4771 then
16) a) log 8 is..
A) 0.3010 B) 0.6020 C) 0.9030 D) n
17) log 24 is
A) 0.4771 B) 0.9030 C) 1.3802 D) n
18) log 108 is..
A) 0.6020 B) 1.4313 C) 1.0333 D) 2.0333 E) n
19) log 25 is.
A) 2.0000 B)0.6990 C) 1.3980 D) n
20) log (0.405)¹/²
A) 1.9084 B) 3.9084 C) 0.3010 D) 3.6074 E) none
21) value of log₃log₄log₃81
A) 1 B) 2 C) 0 D) 3
22) log₃log₂log₂(256)
A) 0 B) 1 C) 2 D) 3 E) n
23) log₂log√₂log₃(81)
A) 0 B) 1 C) 2 D) 3 E) n
24) log₂[log₂{log₃(log₃27³}]
A) 0 B) 1 C) 2 D) 3 E) n
EXERCISE- I
Find the value of:
1) log₂(10) - log₁₆(625)
A) 0 B) 1 C) 2 D) 1/2 E) none
2) log₃log₂log₂(2⁸)
A) 0 B) 1 C) 2 D) 1/2 E) none
3) logᵤa . logᵥx . logₐv
A) 0 B) 1 C) 2 D) 1/2 E) none
4) log₃5 x log₂₅27 is...
A) 0 B) 1 C) 2 D) 3 E) 3/2
5) log₄5 x log₅3 is..
A) log₂3 B)2log₂3 C)log3 D)log2 E) n
6) log₄2 x log₂3 is..
A)log₂3 B)2log₂3 C)log3 D)log2 E) n
7) log₂10 - log₈125 is
A) 0 B) 1 C) 2 D) 10 E) none
8) logₐx . logₓc. log꜀a is..
A) 0 B) 1 C) 2 D) 10 E) none
9) value of log₆ log√₂ 8 is
A) 0 B) 1 C) 2 D) none
EXERCISE- J
Evaluate :
1) log₈√[8 {√8√(8)...∞}]
A) 0 B) 1 C) 2 D) 10 E) none
2) log₄√[4{√4√4...∞}]
A) 0 B) 1 C) 2 D) 10 E) none
EXERCISE - K
**SOLVE:
1)5ˡᵒᵍ ˣ + 3ˡᵒᵍ ˣ= 3ˡᵒᵍ ˣ⁺¹ - 5ˡᵒᵍ ˣ ⁻¹
A) 0 B) 1 C) 10 D) 100 E) none
2) log₅ (5¹⁾ˣ+ 125)= log₅6 + 1 + 1/2x
A) 1 B) 1/2 C) 1/3 D) 1/4 E) none
3) 1/(logₓ 10) + 2= 2/(log₀·₅2)
A) 0.25 B) 0.025 C) 0.0025 E) none
4) logₓ 2. Logₓ/₁₆ 2= log ₓ/₆₄2
A) 0 B) 1 C) 2 D) none
5) log₂x + log₄ x+ log₁₆ x= 5.25.
A) 1 B) 1/10 C) 8 D) none
6) logₓ5 log ₓ/₁₂₅5= log ₓ/₆₂₅5.
A) 25 B) 1/25 C) 50 D)1/50 E) n
7) Log₇ log₅{√(x+5) + √x}= 0
A) 0 B) 1 C) 2 D) 4 E) none
8) a²ˣ⁻³. b²ˣ = a⁶⁻ˣ. b ⁵ˣ then x log(a/b) is
A) 3 B) log a C) 3 log a D) none
9) If logₐ b= 6 and log₁₄ₐ(8b)= 3, then the value of a is..
A) 5 B) 6 C) 7 D) none
9) If the logarithm of y² to the base x³ is equal to the logarithm of x⁸ to the base y¹², then the value of each logarithm is.
A) ±1/3 B) 2/3 C) ±1/5 D) none
10) If log(x²y³)= a and log(x/y)= b, then values of log x and log y is
A) 1/5(a+3b), 1/5(a-2b)
B) 1/5(a-3b), 1/5(a+2b)
C) 1/5(a+3b), 1/5(a+2b) D) none
11) If log (x³y³)= 6, log(x²/y)= -1/2 then the value of x and y is
A) √10, 10√10 B) 10√10, 10√10
C) 10√10, √10 D) none
11) If log x +1= 0, then x is
A) 3 B) 4 C) 5 D) 1/10 E) none
11) if log√₈ b= 10/3 then b is..
A) 32 B) 33 C) 34 D) 35
13) If logₓ(1/2)= 1/2 then x is
A) 1/2 B) 1/3 C) 1/4 D) 1/5
EXERCISE - L
1) If x²+y² = 6xy, then the value of 1/2(l ogx + log y +3 log 2) is
A) log(x+y) B) log x C) log y D) n
2) If a² +b² =23ab Then the value of 1/2(log a+ log b)
A) log a B) log b C) log(a+b) D) n
3) If a³⁻ˣ.b⁵ˣ=aˣ⁺⁵.b³ˣ, then the value of x log(b/a) is
A) log a B) log b C) 1 D) none
4) If a²+b²=14ab, then the value of 1/2(log a + log b) is
A) log a B) log b C) log(a+b) D) n
5) If a²+b² = 27ab, then the value of 1/2 (log a + log b) is
A) log a B) log b C) log(a+b) D) n
6) If log{(a+b)/3} =1/2(log a+ log b) then the value of a/b + b/a is
A)7 B) 6 C) 5 D) 1 E) none
7) If log{(a-b)/4} =1/2 (lig a+ log b) then the value of (a² + b²) is
A)18ab B) 18a C) 18b D) none
8) If a²+b²= 7ab, then the value of ½(loga +logb) is
A) log a B) log b C) log(a+b) D) n
9) If x² + y² =11xy, then the value of 2log3 + log(x) +log(y) is
A) 2log(x-y) B) log(x-y) C) 2xy D) n
10) If a² =b³=c⁵ =x⁶ then the value of logₓ(abc) is
A) 31 B) 5 C) 155 D) 31/5
11) If log(a+b)/7= 1/2 {log a + log b) then the value of a/b +b/a is
A) 47 B) 7 C) 4 D) none
12) The value of log (aˣ/bˣ) + log (bˣ/cˣ) + log ( cˣ/aˣ) is..
A) 0 B) 1 C) log a D) log b E) log ab
Mg. A- R.1
1) If p log a= q and q log b = p, then the value of log (aᑫbᵖ).
A) p+q B) p³+ q³ C) (p³+q³)/p D) (p³+q³)/pq E) none
2) logₐ m+ logₐ n= logₐ (m+n), then value of m in terms of n is
A) n B) n/(n-1) C) 1/(n-1) D) (n-1)/n
3) If (log p)/m= (log q)/n = (log r)/l = log x express p²/qr as a power of x.
A) x²⁻ᵐ⁻ⁿ⁻ˡ B) x²⁺ᵐ⁻ⁿ C) x1⁺ᵐ⁻ⁿ D) n
4) If 3 + log x = 2 log y, express x in terms of y
A) y/1000 B) y²/1000 C) y³/1000 D) n
5) If log₁₀ a= r, then value of (a)²⁾ʳ is
A) 1 B) 10 C) 100 D) 1000 E) 10000
6) If a= b²= c³= d⁴, then the value of log ₐ abcd is
A) 2 B) 1 C) 25 D) 25/2
7) Value of ₐlogₐx is
A) a B) x C) ax D) a/x E) none
8) If logₐ log₂ Log₂ 256=2 then a is
A) 0 B) 1 C) 2 D) 3
9) If log₃ log₂logₐ81=1, then a is
A) √2 B) √3 C) √5 D) √6 E) none
10) value of log ₘn . logₙm is
A) 0 B) 1 C) 2 D) √3
11) If logₘA= log ₙA . P then P is
A) logₘn B) log n C) log m D) none
12) logₘₙm= x,then log ₘₙn is
A) logₘn B) logₙm C) logₘₙm D) n
13) value oflog₁₂(log₁₉16.log₁₆19)
A) 0 B) 1 C) 2 D) none
14) value of log₇9. Log₅7. log₃5
A) 0 B) 1 C) 2 D) none
15) value of log₁₀25(1+ log₂₅40) is
A) 0 B) 1 C) 2 D) none
16) If log₂ 3= a, then₈27 is
A) 0 B) 1 C) 2 D) a E) 3
17) If log ₂₀2= a, then log₂₀10 is
A) 0 B) 1 C) a D) 1-a E) 1+a
18) If log₁₀2= p, then log₂₀5 is
A) 1-p B) 1+p C) (1-p)/(1+p) D) n
19) If logₑ2 logₘ625=log₁₀16. logₑ10 then the value of m is
A) 2 B) 3 C) 4 D) 5 E) none
19) If log₅k. log₃5. logₖx= k then the value of x. If k= 3.
A) 3 B) 3ᵏ C) k³ D) none
20) If logₓ4+ logₓ8+ logₓ32= 5, then the value of x is..
A) 1 B) 2 C) 3 D) 4 E) none
21) value of log 1+ log 2 + log 3 is
A) log 5 B) log(1+2+3) C) 1 D) none
22) Value of (log 81)/(log 27) is
A) 3 B) 4 C) 3/4 D) 4/3 E) none
23) Value of (log128)/(log 32) is
A) 5 B) 7 C) 5/7 D) 7/5 E) none
24) Value of (log 27)/(log √3) is
A) 2 B) 3 C) 6 D) none
25) Value of (log 9 - log 3)/(log 27) is
A) 1 B) 3 C) 1/3 D) none
26) If log(m+n)= log m+ log n then n/(n-1) is
A) m B) mn C) 1 D) 0 E) none
27) Value of (log 32)/(log 4) is
A) 2 B) 5 C) 5/2 D) 2/5 E) none
Mg. A- R. 2
1) Value of (log 27)/(log 9) is
A) 2 B) 3 C) 2/3 D) 3/2 E) none
2) If log 2=x, log 3= y and log 7= z, express log (4 ³√(63)) in terms of x,y ,z.
A) 2x+ 3z+ 2y/3
B) 2x + z/3 + 2y/3
C) 2x + z/3 - 2y/3
D) 2x - z/3 + 2y/3 E) none
3) Value of 2 log(11/13)+ log(130/77) - log(55/91) is
a) 0 b) log 2 c) log 3 d) 2log 2
4) If log (m+n)= log m + log n then the value m/(m -1) is
a) 1 b) n c) n² d) n/2
5) If log {(x+y)/2}= 1/2 (logx + log y) then the value of x is
a) x b) xy c) x² d) y²
6) If log{(a - b)/2}= 1/2(log a + log b) then the value of a²+ b² is
a) 27 b) 27a c) 27b d) 27ab
7) If logₓ (1/49)=-2 then x is
a) 5 b) 6 c) 7d) 8 e) 9
8) If logₓ(1/4√2)=-5 then x is:
a) 1 b) 2 c) √2 d) -1 e)-√2
9) If logₓ(1/243)=10 then x is
a) 1 b) 3 c) √3 d) -3 e) 1/√3
10) If log₄ (32)= x -4 then x is
a) 1 b) 3 c) 13 d) 13/2 e) 2/13
11) If log ₇(2x²-1)=2 then x is
a) 5 b) -5 c) ±5 d) 1/5
12) if log(x²-21)= 2 then x is
a) ±1 b) ±2 c) ±9 d) ±11 e) ±13
13) If log₆{(x-2)(x+3)}= 1 then x is
a) 3 b) 4 c) -3 d) -4 e) 3,-4
14) if log₆(x-2)+ log₆(x+3)=1 then x is:
a) 1 b) 2 c) 3 d) 4 e) 5
15) log(x+1)+ log(x-1)= log11+ 2 log3 then x is
a) 9 b) 10 c) 11 d) 12 e) 13
16) If 1/3 log x= 1/2 log y and log(xy)= 5 then the value of x and y are
a) 1000,100 b) 100,10 c) 10,1 d) 10,100
17) If log 27 base √3= x then x is
a) 3 b) 4 c) 6 d) 9
18)
Tuesday, 14 December 2021
QUICK REVISION (THEORY OF QUADRATICS EQUATION)
Monday, 13 December 2021
MOMENTS, SKEWNESS, KURTOSIS
SKEWNESS:
Karl Pearson: (Mn - Mod)/S. D
: 3(Mn - Med)/S. D
: (Q₃+ Q₁ - 2 Med)/(Q₃ - Q₁)
1) Find the coefficient of skewness from the following:
a) Value: 6 12 18 24 30 36 42
F: 4 7 9 18 15 10 5. +0.139
b) variable frequency
20.5 - 23.5 17
23.5 - 26.5 193
26.5 - 29.5 399
29.5 - 32.5 194
32.5 - 35.5 27
35.5 - 38.5 10
With the help of mode. 0.068
c) Marks No. Of students
Above 0 150
,, 10 140
,, 20 100
,, 30 80
,, 40 80
,, 50 70
,, 60 30
,, 70 14
,, 80 0
With the help of Median - 0.754
d) Marks No. Of students
Below 80 12
,, 90 30
,, 100 65
,, 110 107
,, 120 157
,, 130 202
,, 140 222
,, 150 330 - 0.332
e) Variable Frequency
10 - 20 358
20 - 30 2417
30 - 40 976
40 - 50 129
50 - 60 62
60 - 70 18
70 - 80 10
With the help of Quartiles. 0.131
f) Convert the following into an ordinary frequency table and obtain the values of Quartiles Deviation and Coefficient of Skewness.
Marks below. No of students
80 240
70 190
60 125
50 95
40 75
30 60
20 40
10 25 -0.473
2) In a certain distribution the following results were obtained:
Mean = 45.00
Median= 48.00
Coefficient of skewness= - 0.4. find the standard deviation. 22.5
3) For a moderately skewed data, the arithmetic mean is 100, the coefficient of variation is 35 and the Karl Pearson's coefficient of Skewness is 0.2. find the mode and the median. 97.7
4) Karl Pearson's coefficient of Skewness of a distribution is +0.40. Its standard deviations is 8 and mean is 30. Find the mode and median of the distribution. 26.8, 28.93
5) For a group of 10 items, ∑x= 452, ∑x² =24270, Mode= 43.7. Find the Pearson's coefficient of skewness.
A) +0.08 B) 0.80 C) -0.08 D) -0.80
6) For a moderately skewed distribution, mean= 160, Mode=157, S. D= 50. What is the value of coefficient of variation?
A) 31.52 B) 31.25 C) 31.35 D) 31.58
7) For a moderately skewed distribution, mean= 160, mode= 157, SD= 50. What is the value of Pearson coefficient of skewness.
A) -0.06 B)0.06 C)+0.60 D)+0.60
8) For a moderately skewed distribution, mean =160, Mode= 157, S D= 50. what is the value of Median ?
A) 195 B)159 C)169 D) 191
9) For a moderately skewed distribution, mean= 172, median= 167, SD= 60. what is the value of coefficient of skewness ?
A) -0.25 B) 0.52 C) -0.52 D)0.25
10) For a moderately skewed distribution, mean=172, median= 167, SD= 60. What is value of mode ?
A) 175 B)157 C)159 D) 169
11) The Karl Pearson's coefficient of skewness of a distribution is 0.32. its SD is 6.5, and the mean is 29.6. find the mode.
A)27.25 B)27.45 C)27.54 D) 27.52
12) the Karl Pearson's coefficient of skewness of a distribution is 0.32. Its SD is 6.5, and the mean is 29.6. find the median.
A) 28.9 B)25.9 C)29.8 D) 29.2
13) Given the coefficient of skewness= -0.475, mean= 64, median= 66; find the value of standard deviation.
A)12.36 B)12.53 C)12.63 D) 12.68
14) the measure of skewness for a certain distribution is -0.8. if the lower and upper quartiles are 44.1 and 56.6 respectively, find the median.
A) 55.35 B) 55.53 C) 55.85 D) 55.58
15) For a moderately skewed distribution, the mean is 100, the coefficient of variation is 35, and Karl Pearson Coefficient of Skewness is 0.2. find the mode.
A) 91 B) 93 C) 92 D) 94
16) For a moderately skewed distribution, the mean is 100, the coefficient of variation is 35, and Karl Pearson's coefficient of skewness is 0.2. Find the median.
A) 97.27 B) 97.77 C) 97.57 D) 97.67
17) In a certain distribution mean = 45, median =48, coefficient of skewness = - 0.4. what is the value of standard deviation ?
A) 22.3 B) 22.7 C) 22.5 D) 22.9
18) For a frequency distribution with coefficient of variation= 5, standard deviations= 2, Karl Pearson's coefficient of skewness =0.5. find the mean and standard deviation.
A) 39,40 B) 38, 40 C) 40, 39 D) 40, 42
19) the median, mode and coefficient of skewness for a certain distribution are respectively 17.4 ,15.3, 0.35. Calculate the coefficient of variation.
A) 47 B) 49. C) 48 D) 50
*** For a particular distribution, let mean= 50, Coefficient of Vari6= 40%, Coefficient of skewness =- 0.4 find
20) Find the Variance
A) 399 B)400. C) 401 D) 402
21) find the median.
A) 52.76 B)53.76 C) 53.67 D)52.67.
22) find the mode
A) 58. B) 59 C) 60 D) 61
23) Find the coefficient of variation of a frequency distribution, given that its mean is 120, Mode= 123, coefficient of skewness= - 0.3.
A)8.33%. B)8.53% C)8.34% D)8.53%
24) The median, mode and the coefficient of skewness for a certain distribution are respectively 17.4, 15.3 and 0.35. Find the value of coefficient of variation.
A) 47 B) 49 C) 51. D) 53
** It is given that mean, median and coefficient variation of a set of variable are 45, 42 and 40 respectively.
25) find the mode.
A) 33 B) 34 C) 35 D) 36.
26) find SD
A) 17 B) 19. C) 18 D) 20
27) find the coefficient of skewness
A) 0.3 B) 0.4 C) 0.5. D) 0.6
28) The measure of skewness for a certain distribution is - 0.8. if the lower and upper quartiles are 44.1, and 56.6 respectively. find the median.
A) 56.35 B) 55.36
C) 56.56 D) 55.35.