Monday, 7 February 2022

CIRCLE - XI

1) Find the equation of the circle with::
a) Centre (2,4), radius 5.         x² + y² - 4x - 8y - 5= 0

b) centre (-3, -2) radius=6.          x² + y² + 6x + 4y - 23= 0

c) centre (a, a), radius= a√2.      x² + y² + 2ax - 2ay = 0

d) centre (acos k, a sin k) , radius= √(a² - b²).                x² + y² - 2ax cos k - 2ay sin k = 0

e) centre (-a, -b) , radius= √(a² - b²).
          x² + y² +2ax + 2by + 2b²= 0 

f) centre at the origin and radius 4.          x² + y² - 16 = 0


2) Find the centre and radius of each of the following:
a) (x -3)² + (y -1)²= 9.            (3,1), 3

b) (x - 1/2)² + (y+ 1/3)²= 1/16.       (1/2, -1/3), 1/4

c) (x + 5)² + (y - 3)²= 20.        (-5,3), 2 √5

d) x ² + (y -1)²= 2.              (0,1), √2

e) x² + y² - 4x + 6y= 5.      (2,-3); 3√2

f) x² + y² - x + 2y= 3. (1/2,-); √17/2

3)a) Find the equation of the circle whose Centre is (2,-5) and which passes through the point (3,2).    x² + y² - 4x + 10y - 21= 0

b) Find the equation of the circle whose Centre is (1,2) and which passes through the point (4,6).    x² + y² - 2x - 4y - 20= 0


4)a) Find the equation of the circle radius 5 cm, whose centre lies on the y axis and which passes through the point (3,2).          (x² + y²- 12y+11) or (x² + y² + 4y - 21= 0)

b) Find the equation of the circle whose centre lies on the positive direction of y axis at a distance 6 from the origin and whose radius is 4.                         x² + y²- 12y+20= 0


5)a) Find the equation of the circle whose centre is (2, -3) and which passes through the intersection of the line 3x + 2y = 11 and 2x + 3y = 4.                      x² + y² - 4x + 6y - 3= 0

b) Find the equation of the circle whose centre is (2, 3) and which passes through the intersection of the line 3x - 2y = 1 and 4x + y = 27.       x² + y² - 4x - 6y - 12= 0

c) find the equation of the circle passing through the point (-1,3) and having its centre at the point of intersection of the lines x - 2y = 4 and 2x + 5y- 1 = 0.            x² + y² - 4x + 2y - 20= 0

d) find the equation of the circle passing through the point of intersection of the lines x + 3y = 0 and 2x - 7y = 0 and whose centre is the point of intersection of the lines x - 2y + 4= and x + y + 1 = 0.          x² + y² + 4x - 2y = 0

6)a) If two diameter of a circle lie along the lines x - y = 9 and x - 2y = 7 and the area of the circle is 38.5 sq.cm, find the equation of the circle.                  4x² + 4y² - 88x - 16y +451= 0

b) If the equation of two diameters of a circle 2x + y= 6 and 3x + 2y = 4 and the radius is 10, find the equation of the circle.            x² + y² - 16x + 20y + 64= 0   

7) find the equation of the circle, the co-ordinate of the end points of one of whose diameters are:
a) A(3,2), B(2,5).                x² + y² - 5x - 7y + 16= 0 

b) A(5,-3), B(2,-4).                   x² + y² - 7x + 7y + 22= 0

c) A(- 2, -3) , B(-3,5).               x² + y² + 5x - 2y - 9= 0 

d) A(p,q), B(r,s).                   (x - p)(x - r)+ (y - q)(y - s) = 0

e) A(1,3) , B(4,5). Find also the equation of the perpendicular diameter.                    x² + y² - 5x - 8y +19= 0; 6x + 4y = 31

8) The sides of a rectangle are given by the equation x= -2, x = 4, y =- 2 and y = 5. Find the equation of circle drawn on the diagonal of this rectangle and as its diameter.       x² + y² - 2x - 3y + 18= 0

9) Find the equation of a circle:
a) Which touches both the at a distance of 6 units from the origin.        x² + y² - 12x - 12y + 36= 0

b) Which touches x-axis at a distance of 5 units from the origin and radius 6 units.        x² + y² - 10x - 12y + 25= 0

c) Which touches both the axes and passes through the point (2,1).        x² + y² - 2x - 2y + 1= 0, x² + y² - 10x - 10y +25= 0

d) passing through the origin, radius and ordinate of the centre is -15.              x² + y² ±16x + 30y = 0

e) touches the axes and whose centre lies on x - 2y = 3.      x² + y² +6x + 6y+ 9 = 0 or x² + y² - 2x + 2y +1 = 0

f) whose centre at the point (3,4) and touches the straight line on 5x + 12y = 1.                  169(x² + y² - 6x - 8y)+ 381 = 0 

g) radius 4 units touches the coordinates axes in the first quadrant. Find the equation of its images with respect to the line mirrors x= 0 and y= 0.           x² + y² + 8x - 8y+ 16 = 0 ; x² + y² - 8x + 8y+ 16 = 0

h) touching y-axis at (0,3) and making an intercept of 8 units on the x-axis.                  x² + y² ± 10x - 6y+ 9 = 0 

i) touching x-axis whose centre is (0, -4).                         x² + y² + 8y = 0 

j) whose centre is at (3,4) and which touches the line 5x +12y = 1.         169(x² + y² -6x - 8y)+ 381 = 0 

k) Which passes through the origin and cuts off intercept of length 'a', each from positive direction of the axes.                    x² + y² - ax - ay = 0 

l) centre is (a, b) and which passes through the origin.         x² + y² - 2ax - 2by = 0 

m) pass through the origin and cuts off intercept equal to 3, 4 from x-axis.                    x² + y² - 3x - 4y = 0 

n) pass through the origin and cuts off intercept equal to 2a, 2b from y-axis.                 x² + y² - 2ax - 2by = 0 


o) touch the axis of x at a distance of 4 from the origin and cut off an intercept of 6 from the axis of y.      x² + y² ± 8x ± 10y +16 = 0

p) centre in the first quadrant touches the y-axis at the point (0,2) and passes through the point (1,0). Find the equation of the circle.       x² + y² - 5x - 4y +4 = 0

q) centre (1,0), which passes through the point (3, 3/2). Find also the equation of the equation which touches the given circle externally at P.                 4x² + 4y² - 8x - 21 = 0, 4x² + 4y² - 40x - 24y +111 = 0

10) Find the equation of the circle whose centre is (3, -1) and which cut-off an intercept of length 6 from the line 2x - 5y +18= 0.          x² + y² - 6x + 2y - 28 = 0 

11) If the line 2x - y +1 = 0 touches the circle at the point (2,5) and the centres of the circle lies on the line x+ y - 9 = 0. Find the equation of the circle.               (x - 6)² + (y - 3)² = 20

No comments:

Post a Comment