1)X: 5 12 17 22 27 32 37
Y: 1.1 2.8 5.1 8.8 12 15.2 17.3
a) Find x, when y= 12.8 ?
A) 22.85 B) 25.22 C) 28.25 D) 28.52
b) Find y when X= 19.3 ?
A) 6.082 B) 6.802 C) 6.028 D) 6.208
2) X:1 3 5 7 9 11 13 15
Y: 1 15 65 175 369 671 786 989
a) Find x when y= 100 ?
A) 14.321 B)14.213 C)14.123 D)14.231
b) find x when y=900
A)5.6436 B)5.6653 C)5.6463 D)5.6364
c) Find y when xis 10 ?
A) 550 B) 520 C)580 D) 540
d) find y when X is 4 ?
A) 40 B) 42 C) 38 D) 44
3) What is the value ∆⁵y₀ in terms of y₀,y₁ ,y₂ ?
A) y₅ - 6y₄ + 10y₃ - 10y₂ + 5y₁ - y₀
B) y₅ - 5y₄ + 10y₃ - 10y₂ + 5y₁ - y₀
C) y₅ - 5y₄ + 10y₃ - 12y₂ + 5y₁ - y₀
D) y₅ - 5y₄ + 10y₃ - 10y₂ + 7y₁ - y₀
4) Given y₀= (10-x)(15+x), y₁= (17-x)(6+x), y₂ = (8+x)(9-x), y₃ = 100, obtain a value of x such that the second difference of y are constant.
A) 1/2 √1065 - 25/2, -1/2 √1065 - 25/2
B) 1/2 √1055 - 35/2, -1/2 √1065 - 35/2
C) 1/2 √1065 - 35/2, -1/2 √1065 - 35/2
D) 1/2 √1065 - 35/2, -1/2 √1065 - 35/2
5) Estimate y₂ from the table
X: 1 2 3 4 5
Y: 5 ? 17 29 151
A) 71/5 B) 71/4 C) 71/3 D) 71/2
6) Estimate y₁₂ from the table
X: 3 6 9 12 15
Yₓ: 15 47 79 ? 243
A) 136 B) 163 C) 613 D) 316
7) Using Lagrange's is interpolation formula, find the value of y at x=0 given some set of values (-2,5) (1,7) (3,11) (7,34) ?
A) 1078/180 B) 1708/180 C) 1087/180 D) 1087/108
8) Using Lagrange's interpolation find f(7) from the table
X: 4 5 6 8
Y: 3.11 2.96 2.85 2.70
A) 2.7675 B) 2.6775 C) 2.5675 D) 2.4675
9) Given f(x),
f(0)=10, f(1)+f(2)=100, f(3)+ f(4) +f(5)= 650 find f(4)
A) 220 B) 200 C) 210 D) 240
10) find f(x) for x=24.
U: 20 25 30 35 40
F(u):30.5 34.5 40 47.75 59.25
A) 33.95 B)33.59 C) 39.35 D) 35.39
11) estimate y when x= 0.35
u: 0 0.1 0.2 0.3 0.4
f(u): 1 1.095 1.179 1.251 1.310
A) 1.228 B) 1.822 C) 1.283 D) 1.802
12) The nᵗʰ order forward difference is
A) ∆ⁿ f(x+h) - ∆ⁿ⁻¹f(x)
B) ∆ⁿ⁻¹ f(x) - ∆ⁿ⁻¹f(x+ h).
C) ∆ⁿ⁺¹ f(x+h) - ∆ⁿ f(x).
D) ∆ⁿ⁺¹ f(x+h) - ∆ⁿ⁻¹ f(x).
13) The nᵗʰ order backward difference is
A) ∆ⁿ⁻¹ f(x) - ∆ⁿ⁻¹f(x- h)
B) ∆ⁿ⁻¹ f(x) - ∆ⁿ⁻¹f(x+ h).
C) ∆ⁿ⁺¹ f(x+h) - ∆ⁿ f(x).
D) ∆ⁿ ⁻¹ f(x) - ∆ⁿ⁻¹ f(x - h).
14) The value of ∆²x³ is
A) 6hx² + 6h³ B) 6h²x + 6h³
C) 6h²x - 6h³ D) 6hx + 3h³
15) The value of ∆eˣ is
A) eˣ⁺ʰ - eˣ B) eˣ - eˣ⁻ʰ
C) eˣ⁺ʰ + eˣ D) eˣ⁻ʰ - eˣ
16) If f(x) be a polynomial of mᵗʰ degree then
A) νᵐ⁻¹ f(x) = 0
B) ∆ ᵐ⁺¹ f(x)
C) ∆ᵐ⁻¹ f(x) = constant
D) ν ᵐ⁺¹ f(x) = constant
17) The value of ∆ⁿ [axⁿ + bxⁿ⁻²] with h= 1 is
A) a(n-2)! B) b(n-2)! C) b n! D) a n!
18) The value of ∆ᵐ xᵐ is
A) hᵐ⁻¹ m! B) hᵐ m! C) hᵐ /m! D) hᵐ (m+2)!
19) If the nᵗʰ order difference of a tabulated function f(x) are constant, the value of independent variables are taken at equal intervals, then
A) f(x) is a polynomial of degree n
B) f(x) is a polynomial of degree n-1
C) f(x) is zero D) f(x) is constant
20) if f(x) is given at the points x=x , x , x ,....., Xₙ = b of the interval [a, b], where x₀ < x₁ > ....< xₙ , then the problem of finding f(x) at a points lying in any of the sub-intervals [xᵢ₋ ₁ , x], i= 1,2,.....n is known as
A) interpolation B) extrapolation C) estimation D) none
21) Newton forward interpolation formula is used for
A) centre difference
B) unequal interval C) equal interval D) none
22) Newton backward interpolation formula is used for computing f(x) for values of x lying at the
A) middle of the table
B) end of the table
C) beginning of the table
D) none
23) Find the value of x for which y= 40:
x: 10 12 15 20
Y: 25 32 35 45
A) 19.65 B) 19.56 C) 15.96 D) 16.59
24) Find f(5) for the following data : f(3)=4, f(4)=13, f(6)=43.
A) 24 B) 25 C) 26 D) 27
25) find ∆³ f(2) from the following data of f(x):
f(2)=9, f(4)=63, f(6) =211, f(8)=506.
A) 50 B) 51 C) 52 D) 53
26) Assuming f(x) to be a 3rd degree polynomial of x, find f(x) :
X: 0 1 2 3
Y=f(x): 1 2 11 34
A) x³+ x² - x +2. B) x³+ x² - 2x + 1
C) x³+ 2x² - x +1 D) x³+ x² - x + 1
27) Find f(x) given that f(0) = -3, f(1)=6, f(2)=8, f(3)=12.
A) 126 B) 127 C) 128 D) 129
28) Find the value a and b
X: 10 15 20 25 30 35
Y: 19.97 21.51 a 23.52 24.65 b
A) 21.58, 26.29 B) 22.58, 26.92 C) 22.58, 26.29 D) 22.58, 25.29
29) Calculate f(5)
16) x: 2 4 7 9
Y: 10 26 65 101
A) 37 B) 39 C) 38 D) 40
30) Find the polynomial function f(x) from the following values: f(3)=-1, f(4)=5, f(5)=15.
A) 2x² - 8x +5 B) 2x² - 7x +5 C) 2x² - 8x +6 D) x² - 8x +5
31) Assuming f(x) to be a 3rd degree polynomial of x, find f(2):
X:. 0 1 3 4
Y: 5 6 50 105
A) 17 B) 18 C) 19 D) 20
32) Estimate the value of m from the following table:
z: 0 1 2 3 4
f(z); 1 3 9 m 81
A) 30 B) 31 C) 32 D) 33
33) The population of a certain country is as given below:
year: 1971 1981 1991 2001 2012
Pop: 46 66 81 93 101
Estimate the population for the year 2005.
A) 96.48ml B) 96.84ml C) 96.68ml D) 96.86ml
34) Find the value of U₄ of a function Uₓ, given U₁=10, U₂=15, U₅=42.
A) 35 B) 13 C) 33 D) 31
No comments:
Post a Comment