Saturday, 29 October 2022

DETERMINANT (2)

A) Prove with the help of Property:

1) 1     x      x²
     1     y      y² = (x-y)(y-z)(z-x)
     1     z      z²

2) b+c      a    b
     c+a      c    a =(a+b+c)(a- c)²
     a+b      b    c

3) 1    a   b+ c
     1    b   c+a = 0
     1    c   a+ b

4) 1+a²-b²      2ab            -2b 
      2ab       1- a²+b²         2a  
        2b          -2a          1- a²- b² = (1+a²+b²)³

5) a²+1     ab       ac 
       ab    b²+1      bc = 1+a²+ b²+ c²
       ac      bc      c²+1

6) y+z      x-y     x 
     z+x     y-x      y =  3xyz-x³-y³-z³
     x+y     z-x      z

7) x      y       z 
    x²     y²     z² 
    yz    zy     xy =(x -y)(y-z)(z-x)(xy+ yz+ zy)

8) -a²      ab       ac
     ba     -b²        bc = 4a²b²c²
     ac      bc       -c² 

9) 1+ a       b       c
        a      1+ b     c = 1+a+b+c
        a         b    1+ c

10) 1       x      x²-yz 
       1       y      y²- zx = 0
       1       z      z²- xy

11) a+b+2c       a           b 
          c          b+c+2a     b 
          c              a      c+a+2b = 2(a+b+c)³

12) a         b         c
       a²       b²        c²
     b+c     c+a     a+b = (a-b)(b-c)(c-a)(a+b+c)

13) 1+a      1        1 
         1      1+b      1
         1        1     1+ c = abc(1+ 1/a + 1/b + 1/c)

14) If x,y,z are different and
A= x        x²     1+ x³
      y        y²     1+ y³ = 0
      z        z²     1+ z³ then show that 1+ xyz = 0

15) Find the integral value of x if
   x²      x       1
   0       2       1 = 28
   3       1       4

16) a-b-c          2b            2c
        2a           b-c-a          2c 
        2a             2b         c -a- b = (a+b+ c)³

17) a           b           c 
     a- b      b- c       c- a 
    b+ c      c+a      a+ b = a³+ b³+ c³ - 3abc

18) (a²+ b²)/c         c               c
           a             (b²+c²)/a        a
           b                   b         (c²+a²)/b  = 4abc

19) y+ z        z          y
        z          z+ x       x = 4xyz
        y            x        x+ y

20) a        a+ b     a+ 2b 
   a+ 2b       a         a+ b =9b³(a+b)
    a+ b     a+ 2b        a

B) Solve by Cramer's rule:

1) 3x - 4y= 1; 2x - 7y= 3.      -5/13,-7/13

2) x + 2y - 3z= -4; 2x + 3y+ 2z= 2, 3x - 3y- 4z= 11.                           3,-2,1

3) 3x - y= 7; 2x+ 3y = -1.            2, -1


C) 
1) Find the minor and cofactor of -2 in the deteminant 2     -1        1 
                                3     -2        4 
                                1      1        2       3, 3

2)

CIRCLE (XI)

DEFINITION:
A circle is defined as the locus of a point which moves in a plane such that its distance from a fixed point in that plane is always constant.

Formula :
1) To find the equation of an circle whose centre and radius are given.
(x- h)²+ (y - k)²= a²
The above equation is known as the central form of the equation of a circle.

2) if the centre of the circle is at the origin and radius is a, then equation of circle = x²+ y² = a²




EXERCISE -1

1) Find the equation of a circle whose
A) centre is (2,-3) and radius 5.   x²+ y² - 4x + 6y - 12= 0
B) centre is at origin and radius 6.   x²+ y² - 36= 0
C) centre is (2,-3) and radius 4.   (x+2)²+ (y -3)² = 16
D) centre is (a,b) and radius √(a²+ b²).   x²+ y² - 2ax - 2by = 0
E) centre is (0, -1) and radius 1.   x²+ y² + 2y = 0
F) centre is (a cos k, a sin k) and radius a.   x²+ y² - (2a cos k)x -(2a sin k) y = 0
G) centre is (a,a) and radius a √2.   x²+ y² - 2ax - 2ay = 0
H) centre is at the centre and radius 4.   x²+ y²  - 16= 0


2) Find the centre and radius of each of the following circles:
A) x²+ (y+2)²= 9.                 (0,-2), 3

B) x²+ y²- 4x+ 6y - 12= 0.    (2,-3),5

C) (x+1)²+ (y- 1)²= 4.            (-1,1), 2

D) x²+ y²+ 6x- 4y +4= 0.    (-3, 2),3

E) (x -1)²+ y²  - 4= 0.          (1,0),2

F) (x+5)²+ (y+1)² - 9= 0.    (-5,-1),3

G) x²+ y²- 4x+ 6y - 5= 0.    (2,-3),3√2

H) x²+ y²- x+ 2y - 3= 0.    (1/2,-1), √17/2


()()()()()()() ******** ()+)+?!?!!;!;!;))))


EXERCISE -2

1) Find the equation of a circle whose
A) centre is (2,-1) and which passes through the point (3,6).   x²+ y²- 4x+ 2y - 45= 0
B) centre is (2,-5) and which passes through the point (3,2).   x²+ y²- 4x+ 10y - 21= 0

C) centre is (1,2) and which passes through the point (4,6).   x²+ y² - 2x - 4y - 20= 0

2)A)  Find the equation of a circle passing through the point (2,4) and having its centre at the intersection of the lines x - y= 4 and 2x+ 3y+7= 0.         x²+ y²- 2x+ 6y - 40= 0
B) Find the equation of a circle whose centre is  (2,-5) and which is passing through the intersection of the lines 3x + 2y= 11 and 2x+ 3y+7= 4.         x²+ y²- 4x+ 6y +3= 0
C) Find the equation of a circle passing through the point (-1,3) and having its centre at the intersection of the lines x - 2y= 4 and 2x+ 5y+1= 0.         x²+ y²- 4x+ 2y - 20= 0

D) Find the equation of the circle passing through the point of intersection of the lines x+ 3y= 0 and 2x- 7y= 0 and whose centre is the point of intersection of the lines x+ y + 1= 0 and x -2y+ 4= 0.    x²+ y²+ 4x- 2y = 0

E) If the equations of two diameters of a circle are 2x+ y= 6 and 3x+ 2y = 4 and the radius is 10, find the equation of the circle.   x²+ y²- 16x+ 20y + 64 = 0.

F) If the equations of two diameters of a circle are x- y= 5 and 2x+ y = 4 and the radius is 5, find the equation of the circle.   x²+ y²- 6x+ 4y -12 = 0.

G) If the equations of two diameters of a circle are 2x - 3y+ 12= 0 and x+ 4y = 5 and the area is 154 square units. find the equation of the circle.     (x+3)²+ (y-2)² = 49

H) Find the equation of the circle which has its centre at the point (3,4) and touches the the line 5x+ 12y -1= 0.   169(x²+ y²- 6x - 8y)+ 381 = 0

I) If the line 2x- y+1= 0 touches the circle at the point (2,5) and the centre of the circle lies on the line x+ y= 9. Find the equation of the circle.         (x -6)²+ (y-3)²= 20.

+++++++++++!!!!+++++++++++++++

SOME PARTICULAR CASES
 The equation of a circle with centre at (h, k) and radius equal to a, is
(x- h)²+ (y - k)²= a²

I) When the centre of the circle coincides with the origin then
h= k = 0
Then, the equation is x²+ y² = a²

II) When the circle passes through the origin then the equation is
x²+ y² - 2hx - 2ky = 0

III) When the circle touches x-axis. It means a= k
x²+ y² - 2hx - 2ay + h² = 0

IV) When the circle touches y-axis. It means h= a
x²+ y² - 2ax - 2ky + k² = 0.

V) When the circle touches both the axes: It means h= k= a
x²+ y² - 2ax - 2ay + a² = 0

VI) When the circle passes through the origin and centre lies on x-axis. It means k= 0, h = a.
x²+ y² - 2ax = 0

VII) When the circle passes through the origin and centre lies on y-axis. It means h= 0, k = a.
x²+ y² - 2ay = 0.



EXERCISE -3

1) Find the equation of the circle which touches:
A) the x-axis and whose centre is (3,4).         x²+ y²- 6x - 8y + 9 = 0

) the x-axis at the origin and whose radius is 5.            x²+ y² - 10y = 0

) both the axis and whose is 5.               x²+ y²± 10x ± 10y + 25 = 0

) The lines x= 0, y= 0 and x= a.     (X- a/2(² + (y ± a/2)²= (a/2)²


2) Find the equation of the circle which passes through two points on the x-axis which are at distances 4 from the origin and whose radius is 5.          x²+ y²± 6y - 16 = 0


3) Find the equation of the circle which passes through the origin and cuts off intercepts 3 and 4 from the positive parts of the axes respectively.      (x- 3/2)²+ (y- 2)² = (5/2)²
4) 


Saturday, 22 October 2022

MIXED INTEGRATION (XII)



1)  ∫ 5x² dx.                               5x³/3

2)  ∫ (3x²+ 2e²ˣ) dx.               x³+ e²ˣ 

3)  ∫ √x dx.                           2/3 √x³

4)  ∫ (x+ 1/x)² dx           x³/3+ 2x - 1/x

5) ∫ √x(x³+ 2x -3) dx.      2√x⁹/9 + 4 √x⁵/5 - 2x√x³

6) ∫ (e³ˣ +e ⁻³ˣ)/eˣ dx.           e²ˣ/2  - 1/4e⁴ˣ 

7) ∫ x²/(x+1)  dx.                x²/2 - x + log(x+1)

8) ∫ (x³ + 5x² -3)/(x+2) dx.        x³/3 + 3x²/2 - 6x + 9 log(x+2)

9) √(3+ 2x) dx.          1/3  √(3+ 2x)³

10) ∫ (3x+2)⁷ dx.          1/24 (3x+2)⁸

11)  ∫ dx/(1+ √x).         2√x - 2 log(1+ √x)

12)  ∫ x³/(x² +1)³.           1/4(x²+1)² - 1/2(x²+1)

13) ∫ x⁸/³√(1- x³) dx.                 -1/2  ³√(1- x³)² + 2/5  ³√(1- x³)⁵ - 1/8 ³√(1- x³)⁸

14) ∫ dx/(x² - a²).       

15) ∫ dx/{x(1+ log x)³}.      -1/{2(1+ log x)²

16) ∫ x³/(x+ 1)³dx. -1/4{(2x²+1)/(x²+1)²}

17)  ∫ dx/{x(2+ 3x⁸).               -1/16 log(2/x⁸ +3)

18) ∫(2x +5)/√(x² + x +3) dx.       2√(x²+ x+3) + 4 log{(x+ 1/2) + √(x²+ x +3)}

19) ∫ dx/{(1+ x) √(1- x²)}.        - √{(1- x)/(1+x)}

20)  ∫ dx/{1+ ³√(x+a).     

21) ∫ x eᵅˣ dx.          eᵅˣ/a  (x - 1/a)

22) ∫x² eᵅˣ dx.       

23) ∫ log x dx.               x (log x -1)

24)  ∫ x log x dx.      x²/2 (log x - 1/2)

25)  ∫ x e²ˣ /(2x+1)²dx.      eᵅˣ/4(2x +1)

26)  ∫ x eˣ /(1+ x)²dx.        eˣ(1+ x)

27)  ∫ eˣ {(x²+1)/(x+1)² dx.    

28)  ∫ (3x+2)/{(x -2)(x -3)} dx

29) ∫ (3x+2)/{(x -2)²(x -3)} dx

30) ∫ (3x²- 2x+5)/{(x -1)(x² + 5)} dx

31) ∫ (x+4)/x√x dx.         2√x - 8/√x

32) ∫(x² -1)² dx.        x⁵/5 - 2x³/3 + x

33) ∫(x²+ 5x +3)/(x+2) dx.        x²/2 + 3x - log(x+2)³

34) ∫ e⁵ˣ⁺⁹ dx.                     1/5  e⁵ˣ⁺⁹

35) ∫(3ax² - 2bx)/√(ax³ - bx²) dx.    2√(ax³ - bx²)

36) ∫1/{x√(1+ log x)} dx.       2+√(1+ log x)

37) ∫(4x +2)(x²+ x+1) dx.          4/3 √(x²+ x+1)³

38) ∫ dx/{(1+eˣ)(1+eˣ)}.      eˣ(1+eˣ)²

39)  ∫ (x² + 2x+3)/√(x²+1) dx.     x/2 √(x² +1) + 5/2 log|x+ √(x²+1)| + 2 √(x²+1)

40) ∫ dx/{√(x+1) - √x}.              2/3 {√(x+1)³ + √x³

41) ∫(log x)² dx.               x{(log x)² - 2(log x -1)}

42) ∫ x/eˣ dx.                    - (x+ 1/eˣ 

43) ∫ (logx)/x² dx.           -(log x+1)

44) ∫ x(log x)² dx.          x/2  (log x)² - x²/2 (log x  - 1/2).

45) ∫eˣ(1/x² - 2/x³) dx.           eˣ/x²

46) ∫ 2x/{(x -1)(x+1)}.        Log(x²-1)

47) ∫ dx/{(x -1)(x -2)(x - 3)}.      1/2 Log(x -1) - log(x -2) + 1/2 Log(x -3)

48) If f'(x)= 3x²+ 2 and f(0) = 0, find f(2).                           12



Tuesday, 18 October 2022

INTEGRATION By Partial Fraction

TYPE -1

1) ∫ (2x+1)/{(x+1)(x-2)}.                 1/3 log|x+1|+ 5/3 log|x- 2|

2) ∫ 5x/{(2x+1)(3x+ 2)}.                10/3 log|3x+2|- 5/2 log|2x+ 1|

3) ∫(5x -2)/{(x- 2)(x- 3)}.                   13 log|x - 3|- 8 log|x- 2| 

4) ∫(2x-1)/(x²- 3x+2).       3 log|x- 2| -  log|x- 1|

5) ∫(x-1)/{(x- 3)(x+2)}.      3/5 log|x+2|+ 2/5 log|x- 3|

6) ∫1/{x(x -4)(x-2)}.         1/8 log|x(x-4)/(x-2)²|

7) ∫x²/{(x-1)(x-2)(x-3)}.      1/2 log|x-1| - 4 log|x- 2| + 9/2 log|x - 3|

8) ∫5x/{(x+1)(x²-4)}.               5/6 log|{(x+1)²(x-2)}/(x+2)³|

9) ∫(2x -3)/{(2x+3)(x²- 1)}.             5/2 log|x+1|- 1/10 log|x- 1| - 12/5 log |2x +3|

10) ∫(2x - 1)/{(x -1)(x+2)(x -3)}.       1/2 log|(x- 3)| - 1/6 log |x -1| - 1/3 log |x+2|

11) ∫(2x -3)/{(x²-1)(2x+3)}.                5/2 log|x+1| - 1/10 log|x- 1|- 12/5 log|2x+ 3|

12) ∫(5x² -1)/{x(x -1)(x+1)}.         log|x(x² -1)²| 

13) ∫(x²+ 6x -8)/(x³ -4x).                log|{x²(x -2)/(x+ 2)²}|

14) ∫(x² +1)/{(2x+ 1)(x² - 1)}.                -5/6 log|2x+1| + 1/3  log|x- 1|+ log|x+ |

15) ∫(ax²+ bx + c)/{(x-a)(x+b)(x - c)}.                (a³+ ab+ c)/{(a- b)(a - c)} log|x - a| + (ab²+ b²+c)/{(b - a)(b - c)}  log|x- b| + (ac²+ bc+ c)/{(c - a)(c - b)} log|x - c|

16) ∫(3x +2)/{(x-1)(x-2)(x - 3)}. 

17) ∫(x -1)/{(x+1)(x-2)}.                2/3 log|x+1| + 1/3 log|x- 2|

18) ∫(2x -1)/{(x-1)(x+2)(x - 3)}.                -1/6 log|x-1| - 1/3 log|x+ 2|+ 1/2 log|x - 3|





TYPE -2

1) ∫(x² +x-1)/(x²+x-6)      x- log|x+3| +  log|x- 2|

2) ∫(3+ 4x- x²)/{(x-1)(x+2)}.      -x + 3 log|x+2|+ 2 log|x- 1|

3) ∫(x²+1)/(x²-1).                        x+  log|(x+1)/(x+1|

4) ∫x³/{(x-1)(x-2)(x - 3)}.             x+ 1/2 log|x-1|- 8 log|x- 2|+ 27/2 log|x - 3|

5) ∫(x³+x +1)/(x²-1)               x²/2 + log|x² - 1| + 1/2 log|(x- 1)/(x+1)| 

6) ∫(x³- 6x²+ 10x -2)/{(x-1)(x²- 5x+ 6).         
      
7)∫ x³/{(x-1)(x-2)}.                x²/2 + 3x -  log|x- 1| + 8 log|x- 2|

8) ∫{(x-1)(x-2)(x -3)}/{(x-4)(x-5)(x - 6)}.                x + 3 log|x - 4| - 24 log|x- 5| + 30 log|x - 6|

9) ∫x(x²+1)/{x(x²-1)}.        log|(x²-1)/x|

10) ∫{(x -1)(x -5){/{(x-2)(x-4)}.       x+ 3/2 log|(x-2)/(x -4)|

11) ∫(x²+ x-1)/(x²+ x -6).         x - log|x + 3| + log|x - 2|

12) ∫(3+ 4x - x²)/{(x + 2)(x-1)}.       3 log|(x + 2)| + 2 log |x - 1| - x


TYPE -3

1) ∫ dx/{x(x+1)².                  1/(x+1) + log|x/(x+1)|

2) ∫ x² dx/{(x+1)(x+2)².    4/(x+2) + log|x+1|

3) ∫dx/{x²(x -1)².    (1- 2x)/{x(x-1)} + 2 log|x/(x-1)|

4) ∫dx/{x - a)²(x - b).    1/{(b-a)(x-a( + 1/(b -a)² log|(x-b)/(x-a)|

5) ∫dx/{x(a+ bxⁿ)²}.     1/na² log|xⁿ)(a + bxⁿ)| + 1/{na(a+ bxⁿ)

6) ∫ (3x+1)dx/{(x+2)(x-2)².    5/16 log|x -2| - 7/4(x-2) - 5/16 log|x+2|

7) ∫ (x² +1)dx/{(x-1)²(x+3).         3/8 log|x-1| - 1/2(x-1) + 5/8 log|x+3|

8) ∫ (x² +x+1)/dx/(x-1)³.       log|x-1| - 3/(x -1) - 3/2(x-1)²

9) ∫ x² dx/{(x-1)³(x+1).    1/8 log|(x-1)/(x+1)| - 3/4(x -1) - 1/4(x-1)²

10)∫ (3x -2) dx/{(x+1)²(x+3).    

11) ∫ (2x +1) dx/{(x-3)²(x+2).

12) ∫ (x² +1) dx/{(x-2)²(x+3).

13) ∫ x dx/{(x-1)²(x+2).

14) ∫ x² dx/{(x+1)²(x-1).

15) ∫ (x²+ x -1) dx/{(x+1)²(x+2)}.

16) ∫ (2x²+ 7x -3) dx/{x²(2x+1)}.

17) ∫ (5x²+ 2ox +6) dx/(x³+ 2x²+ x).


TYPE-4

1) ∫ 2x/{(x²+1)(x²+3)}.

2) ∫ dx/{x(xⁿ -1)}.

3) ∫ 18/{(x+2)(x²+ 4)}.

4) ∫ 5/{(x²+1)(x+2)}.

5) ∫x/{(x²+1)(x+1)}.

6) ∫ 1/(1+x+ x²+x³).

7) ∫ dx/(x+1)²(x²+1).

8) ∫2x/(x³ -1).

9) ∫ dx/{(x²+1)(x²+4)}.

10) ∫ x²/{(x²+1)(3x²+4)}.

11) ∫ {(x²+1)(x²+2)}/{(x²+3)(x²+4)}.

12) ∫ (x³-1)/(x³+x).

13)  ∫ (4x⁴+3)/{(x²+2)(x²+3)(x²+4)}

14)  ∫ dx/{x(x⁴+1)}.

15) ∫ dx/{x(x⁵+1)}.

16) ∫ 3/{(1- x)(1+ x²).

17) ∫ x/{(x²+1)(x+1)}.

18) ∫ x⁴/{(x-1)(x²+1)}.

19) ∫ (2x -1)/{(x+1)(x²+2)}.      

20) ∫ (2x -3)/{(x-1)(x²+1)²}.

21) 
















MISCELLANEOUS 

1) Sin 2x/{(1+ sin x)(2+ sin x). log|{(2+ sin x)⁴/(1+ sin x)²|

2) 1/{x log x (2+ log x)}.          1/2 log|log x/log(x+2)|

3) 1/(sin 2x+ sin x).        1/6 log|(1- cosx)| + 1/2 log|(1+ cos x)| - 2/3 log|1+ 2 cos x|

4) 1/{cosx(5 -  4 sin x).     1/18 log|(1+ sin x)- 1/2 log|(1- sin x)| + 4/9 log|5 - 4 sin x|

5) 1/{sin x(3+ 2 cos x).      -1/2 log|1+ cos x)+  1/10 log|(1- cos x)| + 2/5 log|3+ 2 cos x|

6) 1/[x{6(log x)}² + 7 log x +2}].                log|2 log x +1| -  log|3 log x + 2| 

7) Cos x/{(2+ sin x)(3+ 4 sin x).     -1/5 log|2+ sin x| + 1/5 log |3+ 4 sin x|

8) (1- cos x)/{cos x(1+ sin x).                  log|sec x + tan x| - 2 tan (x/2)

9) (tan x + tan³x)/(1+ tan³x).        -1/3 log|1+ tan x| + 1/6 log|tan² x - tan x +1|

10) sin x/sin 4x.                    -1/8 log|(1+ sin x)/(1- sin x)| + 1/4√2 log|1+ √2 sin x)/(1- √2 sin x)|

11) dx/(sin x- sin 2x).       1/2 log|(1- cosx)| - 1/6 log|(1+ cos x)| + 2/3 log|1- 2 cos x|+ c

12) (1- cos x)/{cos x(1+ cos x)}.   Log|sec x + tan x|- 2 tan(x/2)+ c

13) cos x/{(1- sin x)³(2+ sin x).

14) cos x/{(1- sin x)(2- sin x)







Monday, 17 October 2022

RATIONAL EXPRESSION

EXERCISE -1

A) Which of the following algebraic expressions are polynomials?
1) x²+ 3x+ 4.                                         Y
2) x²+ x √x.                                           N
3) x²+ x √3 + 4.                                     Y
4) x²+ 2√x + 4.                                      N
5) (x²- 2x + 1)/(2x +3).                        N
6) 7x² - √3 x+9.                                       
7) x³ + x² -1/x +5.                                   
8) x²+ x √x +5.                                        
9) (√3 x³+ 5x²+7x +9)/(x+2).                
10) x² - 5x +9/x.                                     
11) (x³+ 3x²++3x+1)/(x²+2x+1).         


B) Which of the following expressions are rational expressions?
1) (x³- 3x²+2)/(x² +1).                            Y
2) (x³- 3x²)/(2x +3).                                Y
3) (x²-1)/(2 √x +3).                                 N
4) (√3 x²- 4x +8)/(x -√8).                        Y
5) (x³+ 5x²+4)/(x² + 2 √x -1).                 N
6) (3x² - 5 √x+6)/(x -2).                          N
7) (x²-1)/(2 √x +5).                                 N
8) (x²+x/√3 +5)/(4√x -3).                      N
9) (x³+x²-9x+4)/(2x+3).
10) (x²- 3x+5)/(x+1).
11) (x²+2 √x +5)/(x²+1).
12) (√3 x² -4x +12)/(√x -1).
13) (x³- 3x²+ 5 √x +9)/(x²+ x+1).

Rewrite each of the following rational expression to its lowest terms:

1) (x² - x -12)/(x² +8x +15).                  (x -4)/(x+5)

2) (x² +3x -10)/(x² -3x +2).      (x +5)/(x-1)

3) (x² +2x - 3)/(x² - 2x -15).      (x -1)/(x-5)

4) (6x² - 7x -20)/(9x² +6x -8).               (2x -5)/(3x-2)

5) (x² - 7x +10)/(x² -3x -10).                 (x -2)/(x+2)

6) (2x² +3x +1)/(2x² +x -1).                 (2x +1)/(2x-1)

7) (x² +x -2)/(2x² +x -3).      (x +2)/(2x+3)

8) (x² -5x -6)/(x² +3x +2).                        (x -6)/(x+2)

9) (x² +5x -6)/(x² +10x +24).              (x -1)/(x+4)

10) (x² +7x +12)/(x² +4x +3).               (x +4)/(x+1)

11) (x² -6x +8)/(x² -3x +2).                     (x -4)/(x-1)

12) (2x² - x -10)/(2x² -11x +15).           (x +2)/(x-3)

13) (4x² - 13x +3)/(4x -1).                 (x-3)

14) (6x² - 5x +1)/(9x² +12x -5).           (2x -1)/(3x+5)

15) (x-3)(x² - 5x +4)/(x-1)(x² -2x -3).           (x -4)/(x+1)

16) (x-3)(x² - 5x +4)/(x-4)(x² -2x -3).           (x -6)/(x+2)

17) (8x³ -125)/(4x² +10x +25).      (2x -5)

18) (3x³ -24)/(2x² -15x +22).      3(x²+ 2x +4)/(2x-11)

19) (x -3)(x² - 5x +4)/(x-4)(x² -2x -3).      (x -1)/(x+1)

20) (2x⁴- 162)/(x² +9)(2x -6).             x+3

21) (x²-1)(x+2)(x² - x -72)/(x-9)(x +1).           (x -1)(x+2)(x+8)

22) (x-1)(x-2)(x² - 9x +14)/(x -7)(x² -3x +2).                  (x -2)

23) (x+5)(x² +7x +10)/(x-3)(x² -3x +2).          (x +5)²(x+2)/(x-1)(x-2)(x-3)

24) (5x² - 15x³)/(1- 9x²).      5x²/(3x+1)

25) 4(x² +x -1)/(4x² -4).      (2x -1)/(x-1)

26) (x³ - 19x +30)/(x² -3x -40).      (x -3)(x-2)/(x-8)

27) (x³ - 3x +2)/(2x³- 4x² +6x -4).      (x+2)(x -1)/2(x²- x+2)

28) (x³- 2x² - x +2)/(x³- x² - 4x +4).           (x +1)/(x+2)

29) (x³ +216)/(x⁴- 6x³+ 36x²).            (x +6)/x²

30) (x³ - x -6)/(x³- 3x² +4).      (x²+ 2x +3)/(x²- x -2)

31) (x² - 7x +6)/(x³+ 2x² -x -2).      (x -6)/(x+1)(x+2)

32) (x³+1)/(x⁴ +x²+1).      (x +1)/(x²+x+1)

33) (x² + 2x +4)/(x⁴+4x² +16).      1/(x²- 2x+ 4)

34) (x³+ 4x² +3x)/(x⁴- 10x² +9).      x /(x-1)(x-3)

35) (x² - 4)(x²-8x +7)/(x -2)(x² -6x -7).      (x²+x -2)/(x+1)

36) (x⁴- 13x² +36)/(x³- x² - 6x).     (x+3)(x -2)/x

37) (2x⁴ - 2x)/(x³+ x² +x).      2(x - 1)

38) (x⁴- 10x² +9)/(x³+ 4x² +3x).      (x -3)(x-1)/x

40) (x-4)(6x² +29x +35)/(2x+5)(3x² +19x +28).      (x -4)/(x+4)

41) (x+5)(x² +7x +10)/(x-3)(x² +10x +25).      (x +2)/(x-3)

42) (x³+ 9x² +20x)/(x² +5x +4).      x(x +5)/(x+1)

43) (x(x² - 3x +2)/(x²y- 2xy).          (x -1)/y

44) √[{(x²+3x+2)(x² +5x +6)}/{x²(x² +4x +3)}].                                    (x +2)/x

45) (x-1)(x -2)(x² - 9x +14)/(x-7)(x² -3x +2).           (x -2)

46) (y-3)(y² - 5y +4)/(y-4)(y² -2y -3).  (x-3)(x² - 5x +4)/(x-4)(x² -2x -3).           (y -1)/(y+1) . (x -1)/(x+1)

47) (x³- x² + x -1)/(x³- x² - 3x +3).          (x² +1)/(x²-3)

48) (x³- 6x² +11x -6)/(x³+ x² - 24x +36).      (x -1)/(x+6)

49) (x³- x -6)/(x³- 3x² +4).      (x²+ 2x +3)/(x²- x -2)

50) (x³- 8x² +19x -12)/(x³-3x² - x +3).      (x -4)/(x+1)

52) (x⁴+ 8x³ +23x² +28x +12)/(x⁴+ 4x³+ 3 x²).      (x²+ 4x +4)/x²

53) (x⁴+ 10x³ +35x² +50x +24)/(x⁴+ 4x³-7 x² -34x -24).      (x +3)/(x -3)

54) (2x⁴+ 3x³ -12x² -7x +6)/(4x⁴+ 4x³- 25 x² - x +6).      (x +2)/(2x+1)

55) (x³ -6x² +11x -6)/(x⁴+ 2x³-7x²+8x+12).      (x -1)/(x²+3x +2)

56) (x⁴(a²+ b²)x² + a²b²)/(x⁴+ b⁴).      (x²- a²)/(x²+ b²)

57) (x³ +8)/(x⁴+ 4x²+16).      (x +3)/(x²+ 2x+4)

58) (x⁸-y⁸)/(x⁶- y⁶).        (x² +y²)(x⁴+ y⁴)/(x²+ xy+ y²)(x²-xy+ y²)

59) (x² +x +1)/(x⁴+ x²+1).      1/(x²-x +1)

60) (x² +2x +2)/(x⁴+ 4x³+ 4).      1/(x²-2x +2)

61) (x³ +8)/(x⁴+ 4x²+16).     (x+2)/(x²+2x +4)

62) (x³ +2x² -2x +3)/(x³-8x+3).      (x²-x +1)/(x²-3x+1)

63) 4(x² +x -2)/6(x³+2x² - x -2).      2/3(x +1)

64) (3x³ -16x² +23x -6)/(2x³-11x²+17x-6).      (3x -1)/(2x-1)

65) (2x³ -5x² +x +2)/(2x³+ 3x²- 3x -2).      (x -2)/(x+2)

66) (4x⁴+ 12x³ +7x² -3x -2)/(x³+ 2x²- x -2).      (4x²-1)/(x-1)





EXERCISE -2

1) (x+3)/(x+2) + (x+1)/(x- 2).        2(x²+ 2x- 2)/(x² - 4)

2) (x²+ x-1)/(x²-1) + (x+1)/(x³+ 2).         (x⁵+ x⁴+ 3x²+ x- 3)/(x² - 1)(x³+2)

3) (x+1)/(x-1) + (x²-1)/(x+1).        (x³+ x+ 2)/(x² - 1)

4) (x²+1)/(x+3) + (x²- 3)/(x +3).        2(x²- 1)/(x +3)

5) (x²- 3x)/(x+2) + (x+2)/(x² -3x).      

6) (x+1)/(x-1) + (x-1)/(x+1).        2(x²+1)/(x² - 1)

7) 4x/(x²- 1) + (x+1)/(x- 1).        (x²+ 6x +1)/(x² - 1)

8) (x² - 9)/(x+2) + (x³ - 27)/(x+ 2).            (x³+ x²- 36)/(x + 2)

9) (3x+2)/(x² -16) + (x-5)/(x+ 4)².        (4x²+ 5x+ 28)/(x - 4)(x+4)²

10) (x²+ x-1)/(x²-1) + (x+1)/(x³+ 2).        (x⁵+ x⁴+ 3x²+ x- 3)/(x² - 1)(x³+2)

11) (x²- 4)/(x²+ 4x+4) - (x²- 2x-3)/(x+1).        (-x²+ 2x+4)/(x +2)

12) (2x+1)/(2x-1) - (2x-1)/(2x+1).             8x/(4x²-1)

13) (x²- x- 6)/(x²-9) + (x²+ 2x-24)/(x²- x-12).                   2(x+4)/(x +3)

14) (x+1)/(x- 1) + (x²- 1)/(x+1).        (x²- x+2)/(x -1)

15) (a²+2a +3)/(a²-1) + (a- 4)/(a+1).        (2a² - 3a+7)/(a² -1)

16) {(2x²+3)/(x-1) +(x+3)/(x+1)}+  x/(x² - 1).        x(x²+ 3x+6)/(x² -1)

17) (2x³+ x²+3)/(x²+ 2)² - 1/(x²+2).        (2x³+1)/(x² +2)²

18) {(x²+1)/(x-1) + (x+ 1)/(2x+1)} -{(x-1)/(x+2) + (x+1)/(x -2)}       (2x⁵- 2x⁴- 4x³ - 14x²- 4x+4)/(x -1)(2x+1)(x²- 4)

19) 1/(1- x) + 1/(1+ x) + 2/(x²+ 1) + 4/(1+ x⁴).                        8/(1 - x⁸)

20) 1/(x- 1) - 1/(x+1) - 2/(x²+ 1) - 4/(x⁴+1).                       8/(x⁸ -1)

21) 1/(x²- 7x +12) + 1/(x²- 5x+6).
           2/{(x- 2)(x- 4)}

22) 1/(x²- 5x+6)  + 1//(x²- 3x+2) + 2/(x²- 8x+ 15).            4/(x²- 6x +5)

23) (x- 3)/(x²- x- 64) + (2x -1)/(2x²+ 5x-3)  -  (2x+5)/(x²+ 5x +6).                   0

24) 1/(1+ x + x²) -  1/(1- x + x²) +  2x/(1+ x² + x⁴).                                          0

25) (x²- x - 6)/(x² - 9) +  (x²+ 2x-24)/(x²- x- 12).                           2(x+4)/(x +3)

26) x/(x- y) + y/(x +y) + 2xy/(y² - x²).    1                              
27) (1+ x)/(1- x) - (1- x)/(1+ x) + 4x/(1+ x²)  + 8x³/(1-  x⁴).          8x/(1- x²)

28) 1/(x+ a) + 1/(x - b) + 1/(x+ c) + ax/(x³ + ax²) + bx/(x³+ bx²) + cx/(x³+ cx²).                       3/x

29) x/(x- y) - y/(x+ y) - 2xy/(x²- y²).                (x-y)/(x+y)

30) {(x²+1)/(x -1) + (x+ 1)/(2x+1)} - { (x- 1)/(x +2) + (x+1)/(x-2).        (2x⁵- 2x⁴- 4x³ - 14x² - 4x+4)/(x-1)(2x +1)(x+2)(x-2)

31) (x²+ 3x+2)/(x+4)+ (x-6)/(x+2)} - {(x³+ x²+2)/(x²+ 6x +8)+ (x² -8)/(x²+ 6x+8)}.                  2(2x²+3x- 7)/(x +2)(x+4)




EXERCISE -3

1) (x+ 1)/(x +2) + (x²- 1)/(x²+1).                    (2x³+3x²-1)/(x+2)(x²+1) 

2) (x+ 1)/(x -1)² + 1/(x+1).      2(x²+1) /x(x²-1) 

3) (x+ 4)/(x +2) - (x- 1)/(x -2).   (x-6)/(x²-4)

4) 4x/(x² -1) - (x+1)/(x-1).       -(x-1)/(x+1)

5) 2x/(x²-1) + 3x/(x²-3x+2).              (5x²-x)/(x-2)(x²-1) 

6) {(x+ 1)/(x -1) + (x- 1)/(x+1)} - 3x²/(x-1).                  (-3x³-x²+2)/(x²-1) 

7) (x+ 3)/(x -2) - (x+ 1)/(x-3).            (x-7)/(x²-5x+6) 

8) (x+ 2)/(x -3) - (x- 1)/x.               6x-3)/(x²-3x) 

9) (x+ 1)/(x² -1) - 2/x.             -(x-2)/x(x-1) 

10) (4x - x²+ 1)/(1-x) - (2x+x²- 1)/(2+x).                   - 3(x²+2x+1)/(x²+x-2) 

11) {(x+ 1)/(x -1) - (x- 1)/(x+1)} - 3x²/(x-1).               (-3x³-3x²+4x)/(x²-1) 

12) (x²+ 4)/(x -2) - (x²+2x- 6)/(x+2).                    2(2x²+7x-2)/(x²-4) 

13) (x²+x+ 1)/(x -3) - (2x+ 1)/(3-x).                    (x²+3x+2)/(x-3)

14) {(2x+ 5)/(x +1) + (x²+1)/(x²-1)} - (3x -2)/(x-1).                2/(x+1) 

15) x³/(x- 1) - x²/(x +1) - 1/(x-1)+ 1/(x+1).               (x²+2)

16) {(x²+3x+ 2)/(x +4) + (x- 6)/(x+2)} - {(x³+x²+2)/(x²+6x+8) + (x²-8)/(x²+6x+8)}                 2(2x²+ 3x-7)/(x²+6x+8) 

17) (1+ 8x)  + (8x -1)/(1+8x)  -  (2+2x)/(5+2x).             (128x³+352x²+102x-2) /(16x²+42x+5) 

18) (x²-x-6)/(x² -9) + (x²+2x- 24)/(x²-x-12).                    (2x+8)/(x+3)

19) {(2x²+ 3)/(x -1) + (x+3)/(x+1)}  + x/(x²-1).                 x(2x²+3x+6)/(x²-1) 

20) (x-3)/(x²-7x +12) +  ²(x- 1)/(x²-4x+3) - 3(x -4)/(x²- 5x+4).            (7x-25)/(x³ - 6x²+19x-12)

21) {x²-(y-z)²}/{(x +z)²- y²}  + {y²- (x -z)²}/{(x+y)²- z²}  + {z²- (x-y)²}/{(y+z)²- x²}.           1

22) (1+x)/(1-x) - (1- x)/(1+x)+ 4x/(1+ x²)             8x/(1- x⁴)


EXERCISE -4


1) If A= (x+5)/(x-8) and B= (x-5)/(x+8), find A- B.                     26x/(x²- 64)

2) If P= (x+1)/(x-1) and Q= (x-1)/(x+1), find P+ Q.                     2(x²+1)/(x²- 1)

3) If A= (x²+1)/(x²-1) and B= (x+1)/(x+2), find A+ B.                     (2x³+3x²+1)/(x²- 1)(x+2)

4) If A= (x-1)/(x-2) and B= (x+1)/(x-3), find A+ B.                     26x/(x²- 64)

5) If A= (x+2)/(x-2) and B= (x-2)/(x+2), find A+ B.                             2(x²+4)/(x²- 4)

6) If A= (x+2)/(x-3) and B= (x-2)/(x- 3), find A- B.                     2x/(x- 3)

7) If A= (x+1)/(x²-2) and B= (x²-2)/(x+1), find A+B.             (x⁴-3x²+2x+5)/(x³+x²- 2x -2)

8) If P= 4x/(x²-1) and Q= (x+1)/(x-1), find P+ Q.                    (x²+6x+1)/(x²- 1)

9) If P= (x²-9)/(x+2) and Q= (x³-27)/(x+2) find P+ Q.                (x³+x²-36)/(x+2)

10) If A= (3x+2)/(x²-16) and B= (x-5)/(x+4)², find A+ B.      (4x²+5x+28)/(x- 4)(x+4)²

11)  If A= (2√3 x²+1)/2x and B= -3√3 x² +1)/3x, find A+ B.                            5/6x

12) If A= (x+1)/(x-1)² and B= 1/(x+1), find A+ B.                     2(x²+1)/(x- )²(x+1)

13) If P= (x²-4)/(x²+4x+4) and Q= (x² - 2x-3)/(x+1), find P- Q.    (-x²+2x+4)/(x+2)

14) If P= (2x+1)/(2x-1) and Q= (2x-1)/(2x+1), find P- Q.       8x/(4x²- 1)



EXERCISE -5

1) which rational expression should be added to (x³- 1)/(x²+2) to get (2x³- x²+3)/(x²+2).        (x³ - x²+ +4)/(x² +2)

2) What should be substracted from the expression (5x³+x²- 1)/(x+ 2)  to get (1- 2x+x³) ?         (4x³- 2x² - x +1)/(x+2).      

3) ax²/(x- a)(x- b)(x -c)  +bx/(x- b)(x - c) + c/(x - c) + 1.           x³/(x- a)( x- b)(x - c)

4) 









1) (x²+ 3)/(x² -1) X (x- 1)/2x.                         (x²+3)/(2x²+2x)

2) 4x/(x² -1) X (x+1)/(x -1).       4x/(x -1)²

3) If A= x - 1/x then find the value of A - 1/A.          (x⁴- 3x²+1)/(x³- x)

4) If A= (x+1)/(x -1), find A - 1/A.         4x/(x²- 1)

5) If A= 4x + 1/x, find A+ 1/A.                      (16x⁴+ 9x²+1)/(4x³+x)

6) If R= (x²+ 2)/(x - 3) and S= (x-1)/x , find (R( S)/(R X S).         (x³+ x²- 2x+ 3)/(x³- x²+ 2x- 2)

7) (x²- 3x-4)/(x²- 9) X (x²- x- 6)/(x²+ 3x +2).                 (x-4)/(x+3)

8) (x³- 8)/(x² -4) X (x²+ 6x+ 8)/(x²- 2x+1).        (x³+ 6x²+ 12x+16)/(x²- 2x +1)

9) {(2x²+3)/(x -1) + (x+3)/(x+1)} X (x²- 1)/3x.               (2x² + 3x+5)/3

10) (2x²+3x+ 1)/(3x²+ 4x+1) X (4x²+ 5x+1)/(5x²+ 6x+1) X (15x²+ 8x+1)/(8x²+ 6x +1).                        1

11) (2x² + x- 6)/(x²+ 4x- 5) X (x³- 3x²+ 2x)/(4x² - 6x)  + (3 - x²)/( x²-25)
              (x³- 7x²- 4x+26)/2(x² - 25) 

12) x/{(x + y)²- 2xy} X x⁴ - y⁴)/{(x+y)³ - 3xy(x+y)} X {(x+y)²- 3xy}/{(x +y)² - 4xy}.                     x/(x - y)

13) [(1/x + 1/y) {x- y)²+ xy}] + [(1/x - 1/y) {(x+y)² - xy}].          2y²/x


14) /(x²+ 4x+4) - (x²- 2x-3)/(x+1).        (-x²+ 2x+4)/(x +2)




      (-x²+ 2x+4)/(x +2)



 






      

























































Saturday, 15 October 2022

Short Questions (Metrices)

1) If A= 2     -1
             -1      2 and I is the unit matrix of order 2, than A² is equal to
A) 4A - 3I B) 3A+ 4I C) A- I D) A+ I

2) The multiplicative inverse of matrix 2      1
            -7     4 is
A) 4   -1  B) 4   -1 C) 4  -7  D) -4    -1
   -7    -2     -7   -2       7   2       7    -2

3) If A= 1  0   2 and Adj A= 5   a    -2
             -1  1  -2                     1   q     0
              0   2  1                    -2   -2    b then the value of a and b are
A) a=-4, b= 1 B)a=-4, b= -1 C) a=4, b= 1 D) a=4, b= -1

4) If A= -1     0
               0     2 then the value of A³ - A² is equal to
A) I B) A C) 2A  D) 2I

5) If A= -x    -y 
               z      t , then transpose of adj A is
A) t     z    B) t    y C) t      -z    D) none
    -y   -x.       -z   -x     y     -x

6) Assuming that the sums and products given below are defined, which of the following is not true for metrices?
A) AB= AC does not imply B= C B) A+ B= B+ A C) (AB)'= B' A' D) AB= O implies A= O or, B= O

7) If A= 3      5 & B= 1      17
              2      0          0     -10 then |AB| is equal to
A) 80 B) 100 C) -110 D) 92

8) If A= 5     -2
              3      1 find inverse of A is
A) -2/13   5/13         B) 1      2
      1/13   3/13              -3     5 
C) 1/11     2/11              1     3
     -3/11    5/11             -2     5

9) If If A is a singular matrix of order n then A. (adj A) is equal to
A) a null matrix B) a row matrix C) a column matrix  D) none

10) If A and B are two square metrices and A⁻¹ and B⁻¹ exist, then (AB) ⁻¹ is equal to
A)A⁻¹B⁻¹ B) AB⁻¹ C) A⁻¹B D) B⁻¹A⁻¹

11) If A= 5    6     -3 
               -4    3      2
               -4   -7      2 then the co-factors of the elements of second row are
A) 3,3,11 B) 3,-3,11 C) -39,3,-11 D) 39,-3,11

12) If A= 1   2 & B= 1     2
                2   3          2     1
                3   4
Then,
A) both AB and BA exist B) neither AB nor BA exist C) AB exists but BA does not exist D) AB does not exist but BA exists

13) If A= 2    -1 & B= 1      0
                0     1         -1     -1 then (A+ B)² is not equal to
A) A²+ AB+ BA+ B² B) A²+ AB+ BA+ B²I C) A²I + AB+ BA+ B² D) A²+ 2AB+ B²

14) If A be an n x n matrix and k any scalar, then det kA is equal to
A) k det A B) nᵏ det A C) kⁿdet A D) kn det A

15) If A= -1     2 & B= 5 
                 2    -1          7 and AX= B, then X is equal to
A) 19  17 B)19/3 C) 19/3 17/3 D)19 
                     17/3                            17

16) If A is a square matrix of order 3x3 and k is a scalar, then adj(kA) is equal to which of the following?
A) k adjA B) k² adjA C) k³ adjA D) 2k adjA 

17) If A= 0   1    2
                1   2    3
                3   1    1 and its inverse B=[b ᵢⱼ],then the element b₂₃ of matrix B is
A) -1  B) 1 C) -2 D) 2

18) If A= a     b     c & B= 1    2    3
                d     e     f           2    3   4
                g     h     i           3    4    5

D= -1   -2       & E= -4     -5     -6
      -2   0                  0      0      1
       0  -4
And A= BCD then the value of e
A) 40  B) -40  C) -20  D) 20

19) If A= 1    2 & B= 3      8
                3    4          7      2 and the relation 2X+ A= B, then the matrix X is
A) 2   6   B)1  -3 C) 1    3 D) 2     -6
     4  -2       2  -1      2  -1      4      -2

20) If A= a      2
                2      a and |A³|= 125, then the value of a is
A) ±2  B) ±3  C) ±5  D) 0

21) If A) 1   0    0
               a    1    0
               b    c     1 find the Inverse of A
A)1 0 0 B)1 0 0 C) 1 -a ac- b D)1 0 0
   -a 1 0   -a  1 0      0 1 -c          -a 1 0 ac-b -c 1  -b -c 1     0 0  1        ac  b  1

22) If A= 0    3 & B= 0     4a
                4    5         3b    60 then the value of k, a and b are respectively
A) 12,9,16 B)9,12,16 C) 12,9,12 D) 16,12,9

23) If the matrix A satisfies the equation 1    3  x A = 1     1 
                 0    1           0    -1 then which one of the following represents A?
A) 1   4 B) 1    4 C) 1    -4 D) 1    -2
    -1   0      0   -1     1      0      0    -1

24) For any matrix A, if A⁻¹ exists then which of the following is not true?
A) (A⁻¹)⁻¹= A B) (A')⁻¹= (A⁻¹)' C) (A²)⁻¹ = (A⁻¹)² D) |A⁻¹|=|A|⁻¹

25) If A and B are two square metrices of the same order, than (A- B)² is equal to
A) A²- 2AB+ B² B) A²- AB - BA+ B² C) A²- 2BA+ B²      D) A²+ 2AB+ B²

26) If A= -1   2   4 & B= -2  4     2
                 3   1   0           6  2     0
                -2   4   2          -2  4     8 then which one of the following is correct?
A) B=-A B) B= 6A C) B= 4A D) B= -4A

27) For how many values of x in the closed interval [-4,-1], the matrix
3     -1+x      2
3        -1     x+2
x+3    -1       2 is singular?
A) 0 B) 1 C) 2 D) 3

28) If A= 7   1   2 & B= 3  C) 4
                9    2  1          4       2
                                       5 and the relation AB+ 2C is equal to
A) 43     B) 43 C) 45 D) 44
     44          45     44       45

29) If A= 3      4
                5      7 then the value of A(adjA) is equal to
A) I B) |A| C) |A|. I D) none

30) x+ y     2x+ z =  4        7 
       x- y      2z+ w    0      10 then the value of x,y,z and w are
A) 2,3,1,2 B) 2,2,3,4 C) 3,3,0,1 D) 2,2,4,3

31) The matrix 2       k     -4
                         -1       3      4
                          1      -2     -3 is non singular if
A) k≠2 B) k≠3 C) k≠-3 D)  k ≠ -2 

32) If A= 3     2 & AC= 19    24
                4     5             37    46 then the matrix is equal to
A) 3   4 B) 3   5   C) 5   4  D) 3    2
     5   6      4   6        2   6       6    4

33) If A² - A + I= 0 then the inverse of matrix A is
A) A- I B) A+ I C) A D) I - A

34) Let A and B are two square metrices such that AB= A and BA = B. Then A² is
A) O B) I C) A D) B

35) if A= 4     2
               -1     1 then the value of (A- 2I)(A - 3I) is
A)  A B) I C) O D) 4I

36) if A= 1   -1 & B= a     1
                2   -1          b    -1 and A²+ B², then the value of a and b are
A) 4,1 B) 1,4 C) 0,4 D) 2,4

37) let A= a    0 & B= 1    0
                  1    1          5    1 if A²= B, then the value of a is
A)1 B) -1 C) 4 D) no real value of a

38) 0     7      4
     -7      0     -5
     -4      5      0 is
A) symmetric B) skew symmetric C) non singular D) orthogonal matrix

39) If A= 1    -1   1 & 10B= 4    2    2
                2     1  -3             -5    0    b
                1     1   1              1   -2    3 if B is the inverse of the matrix A, then the value of b is
A) 2   B) -1  C) -2  D) 5

40) If A= 0    0     -1
                0   -1      0
               -1    0      0 then the only correct statement about the matrix A is
A) A⁻¹ does not exist B) A= (-1) I C) A is a zero matrix D) A²= I 



                     

   

Thursday, 13 October 2022

RATIO & PROPORTION (C)

Exercise -1


A) find the third proportion to
1) 6, 30. 150
2) 8, 12. 18
3) a/b + b/a and √(a²+b²). ab
4) 5+ 2√3 and 37+20√3 305+ 17√3


B) Find the fourth proportional to:
1) a+1, a+2, a²+3a+2. (a+2)²
2) x²-4x+3, x²+x-2, x²-9. x²+5x+6
3) p²-pq+q², p³+q³, p-q. p²-q²
4) 8, 13, 16. 26

C) Find the mean proportional between:
1) 6; 54 18
2) (a+b)(a-b)³; (a+b)³(a-b). (a²-b²)²
3) (x-y); (x³- x²y). x² - xy
4) √27- 3√2 and√27+3√2. 3

D) If a: b:: b: c, prove a:c= a²:b²

E) If y is the mean proportional between x and z, prove that xy+ yz is the mean proportional between x²+y² and y²+z².

F) Find x, if
1) x:3= 2:1. 6
2) 7:x= x: 343. 49
3) 3:18= x:36. 6
4) 7:35= 6:x. 30

G) Find two numbers numbers such that the mean proportional between them is 14 and the third proportional to them is 112. 7

H) What must be added to each of the four numbers numbers 10, 18, 22, 38 so that they become in proportion. 2

I) What must be subtracted from each of the numbers 21, 38, 55, 106 so that they become in proportion. 4

J) Find two numbers such that the mean proportion between them is 24 and the third proportional to them is 192. 12, 48

K) Find the number which must be added to each of the number 15, 17, 34 and 38 so that they may become in proportion. 4

L) If three quantities are in continued proportion, prove that the first is to the third the third is the duplicate ratio of the first to the to the second.

M) if a≠ b and a:b is the duplicate ratio of a+c and b+c, prove that c is the mean proportion between a and b.

N) What must be added to the number 6, 10, 14 and 22 so that they become proportional. 2

O) Find the two numbers such that their mean proportional is 24 and the third proportional is 1536. 6,96

P) If x and y are unequal and x:y is the duplicate ratio of x+y and y+z, prove that z is mean proportional between x and y

Q) If q is the mean proportional between p and r, prove that p² - q²+ r² = q⁴(1/p² - 1/q² + 1/r²)

R) If b is the mean proportional between a and c show that abc(a+b+c)³ = (ab +bc+ ca)³


P2)

A) If a, b, c, are in continued Proportion, Prove that

1) a:d:: pa³+qb³+ rc³: pb³+ qc³+rd³

2) a-b: a+b:: a-d: a+2b+2c+d

3) (b-c)²+ (c-d)²+(d-b)²= (a-d)²

4) a+b: c+d:: √(a²+b²):√(c²+d²)

5) a:d:: (pa³+qb³+rc³):(pb³+qc³+rd³)

6) (a-b):(a+b)::(a-d):(a+2b+2c+d)

7) (b-c)²+(c-a)²+(d-b)²=(a-d)²

8) √{(a+b+c)(b+c+d)}= √(ab) +√(bc) + √(cd)

9) √[{(a+b+c)(b+c+d)}/{√(ab)+√(bc) + √(cd)}] =1

10) (a²+b²+c²)(b²+c²+d²)= (ab+bc+cd)²

11) a/d = (a-b)³/(b-c)³

12) √{(a+b+c)(b+c+d)}= √(ab)+ √(bc) + √(cd)

13) a³+c³+e³: b³+d³+f³:: ace: bsf

14) 4(a+b)(c+d)= bd[(a+b)/b + (c+d)/d]²

15) (ab+cd)²= (a²+c²)(b²+d²)

16) a²+b²: a² - b²:: a+c : a- c

17) (a+b+c)(a-b-c)= a²+b²+c²

18) (a+b+c)²/(a²+b²+c²)= (a+b+c)/(a-b+c)

19) (a+b):(b+c):: a²(b-c): b²(a-b)

20) (a+b+c)²:(a²+b²+c²):: (a+b+c)(a-b+c)


B) If x/a= y/b = z/c, show that:

1) {(a²x²+ b²y²+ c²z²)/(a³x+b³y+c³z)}³⁾²= √(xyz/abc)

2) (x²+y²+z²)/(a²+b²+c²) = {(px+qy+rz)/(pa+ab+rc)}²

3) x³/a³ - y³/b³+z³/c³= xyz/abc

4) (ax-by){(a+b)(x-y)} + (by- cz)/ {(b+c)(y-z)} + (cz-ax)/{(c-a)(z-x)} = 3



C) 
If a/b = c/d = e/f, Prove that

1) (ab+cd+ef)²=(a²+c²+e²)(b²+d²+ f²)

2) (a+3c-5e)/(b+3d-5f) is...

3) ³√{(a³-2c³+3e³)/(b³-2d³+3f³)}is.

4) √{(a²+c²+e²)/(b²+a²+f²)

5) (b²+d²+f²)(a²+c²+e²)= (ab+cd+ef)²

6) (a+c+e)/(b+d+f) is...

7) (a³+c³+e³)/(b³+d³+f³)=ace/bsf

8) {(a²b²+c²d²+e²f²)/(ab³+cd³+ef³)}³⁾²=√(ace/bsf)




Solve:

1) (1-px)/(1+px). √{(1-qx)/(1+qx)}= 1. 0, ±1/p √(2p-q)/q

2) {a+√(a²-2ax)}/{a- √(a²- 2ax)}= b. x= 2ab/(b+1)²









1) If x/(b+c-a) = y/(c+a-b) = z/(a+b-c), show that (b--c)x + (c-a)y +(a-b)z =0







Exercise -2
1) Find the third proportional to 15, 20.

2) Divide ₹1320 among 7 men, 11 women & 5 boys so that each women may have 3 times as much as a boy, and a man as much as a woman and a boy together. Find how much each person receives.

3) How many one rupees coins, fifty-paise coins & twenty-five paise coins of which the numbers are proportional to 5/1, 3 and 4 are together worth & 210 ?

4) In 40 litres mixture of milk and water in the ratio of milk and water is 3:1. How much water should be added in the mixture so that the ratio of milk to water becomes 2:1 ?

5) Side of a hexagon becomes 3 times. Find ratio of areas of new and old hexagons.

6) find the number which when added to the terms of the ratio 11: 23 makes it equal to the ratio 4:7.

7) the sum of two numbers is 84. if the two numbers are in the ratio 4:3, find the two numbers. 48, 36

8) if 4a = 3b, find (7a+9b):(4a+5b). 57: 32

9) the number of red balls and green balls in a bag are in the ratio 16:7. if there are 45 more red balls then green balls. find the number of green balls in the bag. 45

10) what least number must be added to each of a pair of numbers which are in the ratio 7:16 so that the ratio between the terms become 13:22 ? 6

11) A number is divided into four parts such that 4 times the first part, 3 times the second part, 6 times the third part and 8 times the fourth part are equal. In what ratio is the number divided? 6:8:4:3

12) Divide 3150 into four parts such that half of the first part, a third of the second part, a fourth of the third part is equal to one- twelfth of the fourth part. 300, 450, 600,1800.

13) if x: y= 4:3, y: z= 2:3, find x:y:z. 8:6:9

14) If a/b = 4/5, then find (2a²-3b)/(7a+6b²). Can't determined

15) Two numbers are in the ratio 4:5, if 7 is added to each, the ratio between the numbers becomes 5: 6. find the numbers. 28, 35

16) Find x: if x+2 : 4x+1 :: 5x+2 : 13x+1. 0 or 2.

17) The total monthly sales of two companies A and B are in the ratio 2:3 and their total monthly expenditures are in the ratio 3:4. Find the ratio of the profits of the two companies given that company A's profit is equal to a fifth of its sales. 6:13

18) If a: b= 3:7, what is the value of (4a+5b)/(2a+2b).
A) 47/20 B) 36/24 C) 56/32 D)10/4 E) none.

19) If a: b= 2:3, b: c= 4:3 , and If c: d= 2:3, find a: b: c: d.
A) 8:12:9:27 B) 16:24:18:27
C) 18:27:36:8 D) none 

20) Vipin's present is twice what the age of Kishor was one year ago. What is the sum of their present ages (in years), if the ratio of the sum of their present ages to the difference of their present ages is 19:5?
A) 21 B) 19 C) 24 D) 34 

21) The weight of the Bimal and Basu are in the ratio 2:3 and the weights of Basu and Bali are in the ratio 4:3. what is Basu's weight (in kg) if the sum of the weights of Bimal, Basu and Bali is 203 kgs ?
A) 84 B) 76 C) 49 D) 65 E) none 

22) the ratio of the number of boys to the number of girls in school is 7:3. If an additional 15 girls were to join the class, the ratio of the number of boys to the number of girls would become 2:3. what is the initial number of the girls in the class ?
A) 4 B) 6 C) 12 D) 5 E) none

23) if k= (a+c)/(b+d) = (c+r)/(f+d) = (a+e)/(b+f) when all quantities are positive, then which of the following must be true ?
A) k= e/f B) k= a/b C) k= c/d D) All of the above E) none

24) if 3 is subtracted from the numerator and 5 is added to the denominator of a fraction, the new fraction formed is 1/2. if 2 is added to the numerator of the initial fraction, the ratio of the new numerator to the denominator becomes 1:1. find the original fraction.
A) 11/13 B) 18/23 C) 13/15 D) 5/14 E) none 

25) The ratio of the Ahmed's age to Mohammad's age is the same as the ratio of the ages of their respective elder brothers. The ratio of the difference of the ages of the ages of Ahmed and Mohammad to that the difference of the ages of their respective brothers is 1:2. what is the ratio of the sum of the ages of their respective brothers to the sum of the ages of the Ahmed and Mohammad?
A) 2:1 B) 4:1 C) 3:1 D) √2:1 

26) Three different types of balls priced at ₹5, ₹8 and ₹13 per piece are displayed in three different boxes by a trader. Mr Paul bought from this shop all three types of balls spending a total sum of ₹768. The numbers of the balls ihe bought, taken in the order in which the prices are mentioned above, are in the ratio 5:4:3. How many balls of the costliest veriety did he buy ?
A) 104 B) 64 C) 24 D) 72 

27) the mean proportional between two numbers is 9 and third proportion of the two numbers is 243. find the larger of the two numbers.
A) 27 B) 81 C) 9 D) none 

28) If 3x - 4y +2z= 0 and 4x - 2y-z= 0, find x:z: y.
A) 8:10:11 B) 8:11:40
C) 11:40:8 D) 8:40:11

29) A person with him a certain number of weighing stones of 100gms, 500 gms and 1kg in the ratio 3:5:1. If a maximum of 5 kg can be measured using weighing stones of 500 gms alone, then what is the number of 100 gm stones he has ?
A) 6 B) 3. C) 9 D) 5

30) What must be subtracted from p and added to q so that the ratio of the resultant becomes 1:3.
A)(p+q)/3 B) (3p-q)/4 C) (p-q)/(p+q) D) (q-3p)/4

31) p,q,r,s, n and m are positive integers such that 4p= 5q= 6r= 12s= 8n = 9m. Which of the following pairs contains a number, which is not integer?
A) {pq/54, (m+n)/17}
B) {q/9, (rs/p}
C) {(r-s)(n-m),(q+s)/17}
D) {p/m, m/q}

** the amount used to purchase one litre of petrol can be used to purchase 3 litres of diesel of 5 litres of kerosene. Out of certain amount, ₹510 is spent on diesel.
32) how much is spent on kerosene if equal volumes of the 3 liquids are purchased with the total amount ?
A) ₹300 B) ₹306 C) ₹382 D) ₹354

33) what will be the amount spent on petrol if the total amount referred in Q. 56 is spent to purchase equal volumes of petrol and kerosene only ?
A) 1250 B)1275 C)1955 D) 1360

34) some apples are divided among 4 people Karan, Kiran, Kumar and Khanna. the ratio of the number of apples given to Kiran to the total number of apples given to Karan and Khanna is 1:2. the ratio of the number of apples given to Kumar to that of the remaining apples is 2:5. Khanna gets 2 apples more than Kiran, Karan gets half the number of apples that Kumar get. What is the total number of apples distributed ?
A) 21 B) 18 C) 19 D) 24

35) If (2x²-4x+3)/(4x-3) =(2x²-3x+5)/(3x-5) Find the value/s of x.
A) 0 B) 2 C) -2 D) both A and C

36) A certain number is added to each of a pair of a numbers which are in the ratio 4:7. The sum of the resulting numbers is 75 and their ratio (taken in the same order as mentioned above) is 8:17. What is the number added ?
A) -12 B) 9 C) -13 D) 8 

37) A garrison of 900 soldiers had food-stock sufficient for 30 days when the rate of consumption is 2.5 kg/day/soldier. After some days of consumption at the rate, 300 soldiers were transferred to another garrison and the balance food lasted for 25 days for the remaining soldiers. If the rate of consumption of the remaining soldiers was 3.0 kg/day/soldier, after how many days from the start, were the soldiers transferred?
A) 12 B) 10 C) 8 D) 15

38) Eight farmers take 4 hours to plough 12 acres of land. What is the area of land that will be ploughed, If 12 farmers work for 14 hours at the same efficiency as in the previous case ?
A) 52 acres B) 63 acres D) 58 acres D) 65 acres

39) Divide 66 into three parts such that the sum of the first two parts equals the third part and the second part is 3 less than twice the first part. What is the ratio of the parts are arranged in the ascending order ? 
A) 14:17:19 B) 5:9:11 C) 11:7:4 D) 4:7:11

40) The speed of a locomotive without any wagons attached to it is 40 kmph. It diminishes by a quantity which is the proportional to the cube root of the number of wagons attached. if the speed of the locomotive is 34 kmph when 27 Wagon are attached, what is the maximum number of wagons that can be attached if the condition is that speed should not be fall below 30 kmph ?
A) 64 B) 125 C) 216 D) 343

41) A certain amount of money is divided among nine brothers. The second brother gets ₹2 more than twice the amount given to the first brother. the third brother gets ₹3 more than the thrice the amount given to the first brother, and so on till the ninth brother. If the ratio of the amount with the ninth brother to the amount with the first brother is 10:1, how much did the fifth brother get (in rupees)?
A) 100 B) 50 C) 90 D) 75 

42) Manoj and Shiva, who are colleageues in an office, have their monthly savings in the ratio 2:3. Manoj spends two-thirds of his income every month. if the ratio of their monthly income is 3:4, what is the ratio of their expenditures?
A) 3:2 B) 4:5 C) 4:3 D) 5:3 

** A test of 60 minutes contains questions on mathematics and English only. the time taken to solve a mathematics question is twice the time taken to answer an English question and the ratio of time taken to solve the mathematics questions to time taken to answer all English questions is 8/7.
43) what is the ratio of the number of English Questions to that of mathematics ?
A) 11/7 B) 7/4 C) 9/4 D) 7/5

44) if the total number of questions is 22. how many English questions can be answered in 18 minutes ?
A) 8 B) 10 C) 11 D) 9

Wednesday, 12 October 2022

REGRESSION (C)

                   REGRESSION

Type -1


1) X: 1      2     3     4      5   
    Y:  3      2     5     4      6       Fit a least square line to the data in the following table using, Find regression equation y on x.     y= 0.8 x + 1.6

2) X:    4      5      6      8    11     

     Y:  12    10     8      7     5      Obtain two lines of regression from the following data:.         y= - 0.93x + 14.72; x= - 0.98y + 15.03

3) Find two regression from the following data:

X:  38     48      43      40      41

Y:  31     38      43      33      35       y= 0.79x+ 2.69, x= 0.52y + 23.18

4) Using the following data, determine the estimated value of x when y= 22 with the help of suitable regression line

X:  4     5     8      9     11     12     14

Y: 16   10   8      7      6        5       4    98x = 1530 - 81y, - 18/7


Type-2

1) Find the value of correlation coefficient, when

A) bᵧₓ= -0.4 and bₓᵧ= -0.9.          0.6

B) bᵧₓ= 1.4 and bₓᵧ= 0.3.          0.65

C) bᵧₓ= 0.9 and bₓᵧ= 0.2.           

D) Regression coefficient of y on x and x on y are 1.2 and 0.3 respectively.                                 0.6

E) σₓ= 10, σᵧ = 12 and bᵧₓ= - 0.8.    0.67

F) σₓ= 5, σᵧ = 4 and bₓᵧ= 0.75.     0.6


2)A) If r= 0.4, Cov(x,y)= 10 and σᵧ = 5, find σₓ.                                         5

B) If r= 0.6, Cov(x,y)= 12 and σₓ= 5, find  σᵧ                                             4

C) If r= 0.4, σₓ= 5, σᵧ = 5, find   Cov(x,y)                                          10

D) σₓ= 36, bₓᵧ= 0.8, r = 0.5, find σᵧ.       22.5

E) σᵧ= 4, bᵧₓ= 0.48, r = 0.6, find σₓ.    5

3) Find the regression equation of y on x from the following values:

A) mean of x and y are 20 and 25 respectively and bᵧₓ= 0.48.      y= 0.48x + 15.4

B) mean of x and y are 10 and 15 respectively and bᵧₓ= 2.5.      2y= 5x - 20


4) Find the regression equation of x on y from the following values:

A) mean of x and y are 90 and 70 respectively and bₓᵧ= 0.48.      x= 1.36y + 5.2

B) mean of x and y are 15 and 10 respectively bₓᵧ=2.5.        x= 2.5y - 10

5) Find the regression equation from the following values:

A) mean of x and y are 3 and 4 respectively and bₓᵧ= bᵧₓ= 0.9.        y= 0.9x+ 1.3, x= 0.9y - 0.6

B) mean of x and y are 4 and 5 respectively and bₓᵧ= 0.65, bᵧₓ= 0.35.        y= 0.35x+ 3.6 , x= 0.65y + 0.75

C) mean of x and y are 4 and 5 respectively and bₓᵧ=0.69, bᵧₓ= 0.39.        y= 0.39x+ 3.44, x= 0.69y + 0.55 

6) Find the mean of x and y, if the regression equation are 5x - 2y -4= 0 and 4x - 7y +13= 0.                2, 3

7) The regression equation of y on x is 15x - 4y = 14 and the regression equation of x on y is 7x + 2y= 11. Estimate

A) the value of x when y= 2.          1

B) the value of y when x= 4.       11.5

8) A) If 2y= 3x+ 6 and 3x= 5y +10 be the regression lines of x on y and y on x respectively, find the ratio of variance of x and y.                 10:9 

B) if the equations of two regression lines are 3x+ 12y= 19 and 3y+ 9x = 46, determine the means of x and y, the correlation coefficient between x and y, the ratio of variances of x and y.     5, 1/3, 1/2√3, 4: 3 

C) The lines of regression of y on x on y are respectively y= x+ 5 and 16x = 9y - 94. Find

i) the variance of x if the variance of y is 16.                                         9

ii) the variance of x and y.              9

D)  Two lines of regression are given by x + 2y = 5 and 2x+ 3y= 8 and σ²ₓ= 12. Find

i) mean of x.                                   1

ii) mean of y.                                  2

iii) standard deviation of y.            2

iv) r.                                           0.866

9) Regression equation of two variables x and y are as follows:  3x+ 2y - 26 = 0 and 6x + y -31 = 0. Find

A) the mean of x.                           4

B) the regression coefficient of x on y and y.                                          -1/6

C) The coefficient of correlation between x and y.                      - 0.5

D) the most probable value of y when x= 5.                                   5.5 

10) In a partly destroyed record the following data are available: Variance of x= 25, Regression equation of x upon y is 5x - y = 22 and that of y upon x is 64x - 45y = 25. Find

A) mean value of x and y.          6, 8

B) standard deviation of y.      40/3

C) coefficient of correlation between x on y.                         8/15 

11) For a bivertia data the mean value of x is 20 and the mean value of y is 45. The regression coefficient of y on x is 4 and that of x on y is 1/9. Find

A) the coefficient of correlation. 2/3

B) the standard deviation of x if the standard deviation of y is 12.   2

C) find the equations of regression lines.       y= 4x -35; x= y/9 + 15

12) The coefficient of correlation between the ages of husbands and wives in a community was found to be 0.8; the mean of husband's age was 25 years and that of wives 22 years. Their standard deviations were 4 and 5 years respectively. Find the two lines of regression. Also obtain 

A) the expected age of husband when wife's age is 12 years.      19 

B) the the expected age of wife when husband's age is 33 years.    30

13) A) A sample of size n= 16 yield the following sums. ∑x= 749, ∑y= 77.90, ∑x² = 42.177, ∑y² = 454.81, ∑xy = 3156.80. Compute the linear regression equation of x on y.          x= 78.4 - 6.49 y 

B) A sample of size n= 10 yield the following sums. Mean of x = 90, mean of y= 70, ∑x² = 6360, ∑y² = 2860, ∑xy = 3900. Compute the linear regression equations.           Y= 0.61X + 15.1,  X= 1.36Y - 5.2

14) From the following results, obtain two regression equations and estimate the yield of crops when the rainfall is 22cms, and the rainfall when the yield is 600 kg:-

          Y(yield in kg)  X(rainfall in cm)

Mean         508.4             26.7

S. D.            36.8               4.6 Coefficient of correlation between yield and rainfall= 0.52.       488.8kg , 32.7 cm 

15) You are given the following data:

                                     X           Y 

Arithmetic mean:      20         25

Standard deviation:   5           4 

Correlation coefficient between x on y is 0.6. find the two regression equations.              Y= 0.48x +15.4, x= 0.75y + 1.25 





Saturday, 8 October 2022

TRIGONOMETRIC EQUATION

EXERCISE -1

Type-1

1) 4 sin 3x - 1= √5.       nπ/3 +(-1)ⁿ π/10 

2)  sin px + sin qx = 0.            2nπ/(p +q),  (2n+1)π/(p - q)

3) 4 sin 4x +1= √5.          nπ/4 +(-1)ⁿ π/40 

4)  7 sin²x+ 3cos² x = 4.       nπ ± π/6

5) Sin 2x - cos 2x= 1.        (2n+1)π/2, nπ + π/4

6) Sin 6x = sin 4x -  sin 2x.        nπ/4, nπ ± π/6 

7) Sin 3x + sin 2x + sin x= 0, 0< x < 2π.            π/2, 2π/3, π, 4π/3, 3π/2 

8) Sin 2x + sin 4x + sin 6x= 0.   nπ/4, nπ±, π/3

9) sin x + sin 5x = sin 3x, 0≤ x ≤ π.                nπ ± π/6

10) Sin 4x+ Sin 3x + sin 2x + sin x= 0.           (2n+1)π/2, (2n+1)π, 2nπ/5
 
11) Sin 4x = cos 3x + sin 2x= 0, 0< x < π.                           π/6, π/2, 5π/6

12) Sin 3x + sin 2x + sin x= cosx + cos 2x + cos 3x.             nπ/2 + π/8, 2nπ± 2π/3

13) Sin 3x + cos 3x = sin 9x cos 7x = 0.                     nπ/4, (2n+1)π/24

14) 2Sin 3x sin x = 1.       (2n+1)π/4, nπ± π/6

15) Sin 3x cos x= sin 4x.      nπ/2, nπ± π/6 

16) Sin 3x = sin 5x - 2 sin x cos 2x.            nπ/3, nπ

17) 2 sin² x + 3 cos x = 0.         2nπ ± 2π/3

18) 2 sin² x +sin² 2x = 2.  (2n+1)π/2, (2n+1)π/4

19) 1+ 2sin x cosx - 2 sin x - cos x = 0, 0≤ x ≤ 2π.              0, π/6, 5π/6, 2π

20) 1 - 2 sin x - 2 cos x + cot x = 0, 0< x <2π.         π/6, 3π/4, 5π/6, 7π/4

21) sin 2x tan x + 1 = sin 2x + tan x.          nπ + π/4, (4n+ 1)π/4

22) sin x + √3 cos x = √2, 0≤ x ≤2π.         5π/12, 23π/12

23) sin x + cos x = √2, -π < x < π.    π/4

24) sin x - √3 cos x = 1.             2nπ+ π/2, 2nπ - 5π/6

25) sin x/sin 2x + cosx /cos 2x= 2.      (2n+1)π/6 - a/6, nπ+  a/2

26) Sin x + cos x= √2 cos 2x.    2nπ - π/4, 2nπ/3 +π/12

27) 4 sin x sin 2x sin 3x = sin 4x.      nπ/2, (2n+1)π/3 

Type-2

1) Cosec x + √3 sec x =4.    2nπ/3 + 5π/18, 2nπ + π/6.

Type -3

2) √2 cos x +1= 0.           2nπ ± 3π/4

3) 2(cos²x - sin²x)= 1.         nπ ± π/6

4) 4cos²x + 6sin²x =5.        nπ ± π/4

5)  cos 4x = sin 3x         (4n+1)π/14, (4n-1)π/2

6) cos 3x = sin 2x, 0< x < π.      π/10, π/2, 9π/10 

7) cos 2x -  cos 4x= 0, 0< x <  360.      60, 120, 180, 240, 300

8) Cos 4x = cos 3x - cos 2x.                               (2n+1)π/6, 2nπ ± π/3

9) cos x + cos 3x + cos 5x + cos 7x = 0.                  (2n+1)π/8, (2n+1)π/4, (2n+1)π/2

10) cos 9x + cos 7x= cos 5x + cos 3x.               (2n+1)π/2, nπ/6, π, nπ/2

11) cos x - sin 3x = cos 2x.     2nπ/3, nπ+ π/4, (4n -1)π/2

12) Cos 6x + cos 4x = sin 3x + sin x.       (2n+1)π/2, (4n+1)π/14, (4n-1)π/6

13) Cos 2x - sin 2x = cosx - sin x - 1.                        nπ + π/4, 2nπ ± π/3

14) Cos 6x + cos 4x + cos 2x +1 = 0, 0< x ≤ π.            π/6, π/2, 5π/6, π/4, 3π/4 

15) Cosx + sin x = 1/√2.          2nπ + 7π/12, 2nπ - π/12

16) cos x + √3 sin x= √3.          2nπ + π/2, 2nπ +π/6

17) cos x - √3 sin x= 1.        2nπ, 2nπ -  2π/3

18) cos³x - cos x sin x - sin³x= 1.           2nπ, 2nπ - π/2, 

19) 4 cos x cos 2x cos 3x = 1/4, 0≤ x ≤π.                   nπ, nπ/3 ± π/9

20) 2 - cos x = 2 tan (x/2).        2nπ + π/2

21) Cos³x sin 3x + sin³x cos 3x = 3/4.                       (4n+1)π/8

22) Cos x + sin x = cos 2x + sin 2x.           2nπ/3 + π/6

23) Cos 9x cos 7x = cos 5x cos 3x.       nπ/4, nπ/12
 


Type -4

1) sec x + √2= 0.             2nπ± 3π/4

2) sec 4x - sec 2x = 2.      (2n+1)π/2, (2n+1)π/10

3) sec (π/4 + x)+ sec(π/4 - x) = 2√2.                2nπ/3, 2nπ

4) 1+ sec x = cot²(x/2).      (2n+1)π, 2nπ ± π/3

5) sec x + 1= (2+ √3) tan x,.0< x < 2π.                       π/6, π.

Type-5

1) √3 tanx +1= 0.                 nπ- π/6

2) tan²x = 3cosec²x - 1.       nπ ± π/3

3) tan px = cot qx.   (2n+1)π/2(p+q) 

4) Tan x + cot x= 4.         nπ/2 +(-1)ⁿ. π/12

5) Tan x + cot 2x= 2.                 nπ/2+(-1)ⁿ.π/12

6) tanx - cot x= cosecx.          2nπ ± π/3, (2n+1)π

7) tan²x - (√3+1)tan x +√3 = 0.    nπ+ 4, nπ + π/3

8) tan 3x + tan x = 2 tan 2x.      nπ/2, nπ

9) tan 3x + tan x + tan 2x= 0.    nπ/3, nπ+ k where tan k= 1/√2

10) tan 2x + tan x - tan x tan 2x = 1.          nπ/3 + π/12

11) tan(π/4 +x) + tan(π/4- x) = 4.            nπ ±π/6

12) (1- tan x)(1+ sin 2x)= (1+ tan x).               nπ - π/4, nπ

14) tan x = sin 2x + cos 2x.                   (2n+1)π/4, nπ - π/4

15) tan²x+ cot²x= 2.             nπ ± π/4

Type-6

1)  √3 cot x +1= 0.                n π - π/3

2)  cot x - cot 2x= 2.            nπ +(-1)ⁿ. π/12

3) cot x + tan x= 2 sec x, 0< x < 360.                          30, 150

4) cot x + cot (π/4 + x) = 2.       nπ ± π/6

5) 4 cot 2x = cot² x - tan²x.       nπ ± π/4

6) cot(x - a)+ cot(x+ a)= 2 cot x.            (2n+1)π/2

EXERCISE -2

1)