TYPE -1
2) ∫ 5x/{(2x+1)(3x+ 2)}. 10/3 log|3x+2|- 5/2 log|2x+ 1|
3) ∫(5x -2)/{(x- 2)(x- 3)}. 13 log|x - 3|- 8 log|x- 2|
4) ∫(2x-1)/(x²- 3x+2). 3 log|x- 2| - log|x- 1|
5) ∫(x-1)/{(x- 3)(x+2)}. 3/5 log|x+2|+ 2/5 log|x- 3|
6) ∫1/{x(x -4)(x-2)}. 1/8 log|x(x-4)/(x-2)²|
7) ∫x²/{(x-1)(x-2)(x-3)}. 1/2 log|x-1| - 4 log|x- 2| + 9/2 log|x - 3|
8) ∫5x/{(x+1)(x²-4)}. 5/6 log|{(x+1)²(x-2)}/(x+2)³|
9) ∫(2x -3)/{(2x+3)(x²- 1)}. 5/2 log|x+1|- 1/10 log|x- 1| - 12/5 log |2x +3|
10) ∫(2x - 1)/{(x -1)(x+2)(x -3)}. 1/2 log|(x- 3)| - 1/6 log |x -1| - 1/3 log |x+2|
11) ∫(2x -3)/{(x²-1)(2x+3)}. 5/2 log|x+1| - 1/10 log|x- 1|- 12/5 log|2x+ 3|
12) ∫(5x² -1)/{x(x -1)(x+1)}. log|x(x² -1)²|
13) ∫(x²+ 6x -8)/(x³ -4x). log|{x²(x -2)/(x+ 2)²}|
14) ∫(x² +1)/{(2x+ 1)(x² - 1)}. -5/6 log|2x+1| + 1/3 log|x- 1|+ log|x+ |
15) ∫(ax²+ bx + c)/{(x-a)(x+b)(x - c)}. (a³+ ab+ c)/{(a- b)(a - c)} log|x - a| + (ab²+ b²+c)/{(b - a)(b - c)} log|x- b| + (ac²+ bc+ c)/{(c - a)(c - b)} log|x - c|
16) ∫(3x +2)/{(x-1)(x-2)(x - 3)}.
17) ∫(x -1)/{(x+1)(x-2)}. 2/3 log|x+1| + 1/3 log|x- 2|
18) ∫(2x -1)/{(x-1)(x+2)(x - 3)}. -1/6 log|x-1| - 1/3 log|x+ 2|+ 1/2 log|x - 3|
TYPE -2
1) ∫(x² +x-1)/(x²+x-6) x- log|x+3| + log|x- 2|
2) ∫(3+ 4x- x²)/{(x-1)(x+2)}. -x + 3 log|x+2|+ 2 log|x- 1|
3) ∫(x²+1)/(x²-1). x+ log|(x+1)/(x+1|
4) ∫x³/{(x-1)(x-2)(x - 3)}. x+ 1/2 log|x-1|- 8 log|x- 2|+ 27/2 log|x - 3|
5) ∫(x³+x +1)/(x²-1) x²/2 + log|x² - 1| + 1/2 log|(x- 1)/(x+1)|
6) ∫(x³- 6x²+ 10x -2)/{(x-1)(x²- 5x+ 6).
7)∫ x³/{(x-1)(x-2)}. x²/2 + 3x - log|x- 1| + 8 log|x- 2|
8) ∫{(x-1)(x-2)(x -3)}/{(x-4)(x-5)(x - 6)}. x + 3 log|x - 4| - 24 log|x- 5| + 30 log|x - 6|
9) ∫x(x²+1)/{x(x²-1)}. log|(x²-1)/x|
10) ∫{(x -1)(x -5){/{(x-2)(x-4)}. x+ 3/2 log|(x-2)/(x -4)|
11) ∫(x²+ x-1)/(x²+ x -6). x - log|x + 3| + log|x - 2|
12) ∫(3+ 4x - x²)/{(x + 2)(x-1)}. 3 log|(x + 2)| + 2 log |x - 1| - x
TYPE -3
1) ∫ dx/{x(x+1)². 1/(x+1) + log|x/(x+1)|
2) ∫ x² dx/{(x+1)(x+2)². 4/(x+2) + log|x+1|
3) ∫dx/{x²(x -1)². (1- 2x)/{x(x-1)} + 2 log|x/(x-1)|
4) ∫dx/{x - a)²(x - b). 1/{(b-a)(x-a( + 1/(b -a)² log|(x-b)/(x-a)|
5) ∫dx/{x(a+ bxⁿ)²}. 1/na² log|xⁿ)(a + bxⁿ)| + 1/{na(a+ bxⁿ)
6) ∫ (3x+1)dx/{(x+2)(x-2)². 5/16 log|x -2| - 7/4(x-2) - 5/16 log|x+2|
7) ∫ (x² +1)dx/{(x-1)²(x+3). 3/8 log|x-1| - 1/2(x-1) + 5/8 log|x+3|
8) ∫ (x² +x+1)/dx/(x-1)³. log|x-1| - 3/(x -1) - 3/2(x-1)²
9) ∫ x² dx/{(x-1)³(x+1). 1/8 log|(x-1)/(x+1)| - 3/4(x -1) - 1/4(x-1)²
10)∫ (3x -2) dx/{(x+1)²(x+3).
11) ∫ (2x +1) dx/{(x-3)²(x+2).
12) ∫ (x² +1) dx/{(x-2)²(x+3).
13) ∫ x dx/{(x-1)²(x+2).
14) ∫ x² dx/{(x+1)²(x-1).
15) ∫ (x²+ x -1) dx/{(x+1)²(x+2)}.
16) ∫ (2x²+ 7x -3) dx/{x²(2x+1)}.
17) ∫ (5x²+ 2ox +6) dx/(x³+ 2x²+ x).
TYPE-4
1) ∫ 2x/{(x²+1)(x²+3)}.
2) ∫ dx/{x(xⁿ -1)}.
3) ∫ 18/{(x+2)(x²+ 4)}.
4) ∫ 5/{(x²+1)(x+2)}.
5) ∫x/{(x²+1)(x+1)}.
6) ∫ 1/(1+x+ x²+x³).
7) ∫ dx/(x+1)²(x²+1).
8) ∫2x/(x³ -1).
9) ∫ dx/{(x²+1)(x²+4)}.
10) ∫ x²/{(x²+1)(3x²+4)}.
11) ∫ {(x²+1)(x²+2)}/{(x²+3)(x²+4)}.
12) ∫ (x³-1)/(x³+x).
13) ∫ (4x⁴+3)/{(x²+2)(x²+3)(x²+4)}
14) ∫ dx/{x(x⁴+1)}.
15) ∫ dx/{x(x⁵+1)}.
16) ∫ 3/{(1- x)(1+ x²).
17) ∫ x/{(x²+1)(x+1)}.
18) ∫ x⁴/{(x-1)(x²+1)}.
19) ∫ (2x -1)/{(x+1)(x²+2)}.
20) ∫ (2x -3)/{(x-1)(x²+1)²}.
21)
MISCELLANEOUS
1) Sin 2x/{(1+ sin x)(2+ sin x). log|{(2+ sin x)⁴/(1+ sin x)²|
2) 1/{x log x (2+ log x)}. 1/2 log|log x/log(x+2)|
3) 1/(sin 2x+ sin x). 1/6 log|(1- cosx)| + 1/2 log|(1+ cos x)| - 2/3 log|1+ 2 cos x|
4) 1/{cosx(5 - 4 sin x). 1/18 log|(1+ sin x)- 1/2 log|(1- sin x)| + 4/9 log|5 - 4 sin x|
5) 1/{sin x(3+ 2 cos x). -1/2 log|1+ cos x)+ 1/10 log|(1- cos x)| + 2/5 log|3+ 2 cos x|
6) 1/[x{6(log x)}² + 7 log x +2}]. log|2 log x +1| - log|3 log x + 2|
7) Cos x/{(2+ sin x)(3+ 4 sin x). -1/5 log|2+ sin x| + 1/5 log |3+ 4 sin x|
8) (1- cos x)/{cos x(1+ sin x). log|sec x + tan x| - 2 tan (x/2)
9) (tan x + tan³x)/(1+ tan³x). -1/3 log|1+ tan x| + 1/6 log|tan² x - tan x +1|
10) sin x/sin 4x. -1/8 log|(1+ sin x)/(1- sin x)| + 1/4√2 log|1+ √2 sin x)/(1- √2 sin x)|
11) dx/(sin x- sin 2x). 1/2 log|(1- cosx)| - 1/6 log|(1+ cos x)| + 2/3 log|1- 2 cos x|+ c
12) (1- cos x)/{cos x(1+ cos x)}. Log|sec x + tan x|- 2 tan(x/2)+ c
13) cos x/{(1- sin x)³(2+ sin x).
14) cos x/{(1- sin x)(2- sin x)
No comments:
Post a Comment