EXERCISE - A
a) 6²
b) 7³
c) 4⁴
d) 5⁵
e) 8³
f) 7⁵
2) Evaluate:
1) 2³ x 4²
2) 2² x 3³
3) 3² x 4²
4) 2³ x 5²
5) 3² x 5³
6) (4 x 3)³
7) 3³ x 5²
8) 5³ x 2⁴
9) (5 x 4)²
3) Evaluate:
a) (3/4)⁴
b) (-5/6)⁵
c) (-3/-5)³
d) (2/5)²
e) (-4/5)⁴
f) (-3/7)⁴
g) (-2/5)³
h) (1/6)⁴
i) (-1/4)⁵
j) (3/5)⁵
k) (1/-2)³
4) Evaluate:
a) (2/3)³ x (3/4)².
b) (-3/4)³ x (2/3)⁴.
5) Which is greater:
a) 2³ or 3²
b) 2⁵ or 5²
c) 4³ or 3⁴
d) 5⁴ or 4⁵
6) Express each of the following in exponential form:
a) 512.
b) 3600
c) 1250
d) 1350
e) 1458
f) 1176
g) 1/32
h) -27/125
i) 8/-512
j) 1/1024
k) 32/243
l) 16/625
7) Find the reciprocal of:
a) (-2/3)⁴
b) (3/2)⁻⁴
c) (-2/7)⁴
d) (-2/9)⁴
e) (1/2)⁻¹⁰
f) (4/7)⁻⁵
7) If a= 2 and b= 3, find the value of:
a) (a + b)².
b) (b - a)³
8) Express:
a) 1024 as power of 2.
b) 729 as a power of 3.
9) If 27 x 32 = 3ˣ x 2ʸ; find the values of x and y.
10) If 64 x 625 = 2ᵃ x 5ᵇ; find the value of (i) a and b (ii) 2ᵇ x 5ᵃ
EXERCISE - B
1) Evaluate:
a) 2⁸ ÷ 2³.
b) (3⁰)⁶
c) 5⁴ ÷ 5³ x 5⁵
d) 2³ ÷ 2⁸
e) 8³ x 8⁻⁵ x 8⁴
f) 4⁴ ÷ 4³ x 4⁰
g) (2⁶)⁰
h) 5⁴ x 5³ ÷ 5⁵
i) (3⁵ x 4⁷ x 5⁸)⁰
2) Simplify, giving answers with positive index:
a) i) (5/7)⁻²
ii) (-4/7)⁻³
iii) (7)⁻¹²
iv) 2b⁶ . b³ , 5b⁴
b) (-a⁵)(a²)
c) (-3)²(3³)
d) (5a²b)(2ab²)(a³b)
e) 3ʸ . 3² . 3⁻⁴
f) 4x²y² ÷ 9x³y³
g) (a¹⁰)¹⁰ (1⁶)¹⁰
h) - (3ab)² (-5 a²bc⁴)²
i) (2a³)⁴ (4a²)²
j) (1/2x)³ x (6x)²
k) {(5x⁷)³ . (10x²)²}/(2x⁶)⁷
l) x²y³. 6x⁵y. 9x³y⁴
m) (-y²) (-y³)
n) (-4x) (-5x²)
o) x²ᵅ⁺⁷ . x²ᵅ⁻⁸
p) 2⁴ᵅ . 2³ᵅ . 2⁻ᵅ
q) (10²)³ (x⁸)¹²
r) (n²)² (-n²)³
s) (-2)² x (0³) x (3)³
t) (4x²y³)³ ÷ (3x²y³)³
u) (1/4ab²c)² ÷ (3/2a²bc²)⁴
v) (7p²q⁹r⁵)² (4pqr)³/(14p⁶q¹⁰r⁴)²
3) Simplify and express the answer in the positive exponent form:
a) ((-3)³ x 2⁶)/(6 x 2³)
b) -128/2187
c) {(2³)⁵ x 5⁴}/(4³ x 5²)
d) (a⁻⁷ x b⁻⁷ x c⁵ x d⁴)/(a³ x b⁻⁵ x c⁻³ x d⁸)
e) {36 x (-6)² x 3⁶}/(12³ x 3⁵)
f) (a³ b⁻⁵)⁻²
4) Evaluate:
a) 6⁻² ÷ (4⁻² x 3⁻²)
b) 5³ x 3² + (17)⁰ x 7³
c) (2²)⁰ + 2⁻⁴ ÷ 2⁻⁶ + (1/2)⁻³
d) [(5/6)² x 9/4)] ÷ [(-3/2)² x 125/216]
e) 2⁵ x 15⁰ + (-3)³ - (2/7)⁻²
f) 5ⁿ x 25ⁿ⁻¹ ÷ (5ⁿ⁻¹ x 25)ⁿ⁻¹)
5) If m= -2 and n= 2; find the value of:
a) m² + n² - 2mn.
b) 6m⁻³ + 4n².
c) mⁿ + nᵐ
d) 2n³ - 3m
6) State true or false
a) 8 x 8¹⁵ = 64¹⁶
b) 27⁰ = 54903⁰
c) - 1ⁿ = -1, if n is an odd whole number.
d) (-3)⁻³ = +9
e) 16⁸ ÷ 4² = 4⁶
f) (-1)ⁿ = ¹, if n is an even whole number
g) 4⁻⁴ = -16
EXERCISE - C
1) Evaluate:
a) (3/2)⁵ x (3/2)⁷
b) 8¹¹ x 8⁻¹³ x 8²
c) (-7/5)⁴ x (-7/5)⁶ x (-7/5).
d) (5/3)⁴ x (5/3)⁶ ÷ (5/3)⁴
2) Simplify:
a) {(-3/4)²}⁻³
b) [{(-2/3)²}⁻³]⁻¹
c) [{4/5}⁻⁸]¹⁾⁴
d) [(2/5)³ x (2/5)⁴ x (2/5)¹¹ ÷ (2/5)⁸]
3) Find the value of n, if (-2)³ⁿ⁺¹ x (-2)⁴= (-2)⁸.
4) Find 3³+ 4³ + 5³ and give the answer in cube.
5) If (x⁵ . x⁻²)²= 64 what is the value of x⁻⁴ ?
6) Find the value of a²b³ when a= 2 and b = 3.
7) Find the value of (2/3)⁻² + (1/3)⁻² + (1/2)⁻⁵.
8) By what number should (3)⁻⁸ be multiplied to get (3)⁻⁴ ?
9) By what number should (4)⁻⁵ be multiplied to get (4)¹² ?
10) By what number should (-3/2)⁻³ be divided so that the quotient is (4/5)⁻².
11) By what number should (2)⁻⁴ be multiplied to get 2²⁷ ?
12) Verify that: (x . y)ᵐ = xᵐ . yᵐ for x= 2, y= 3 and m= 4
EXERCISE - D
Evaluate:
1) 2⁻⁵
2) (1/4)⁻⁵
3) (-2/7)⁻⁴
4) (2/5)⁻⁴ x (2/5)⁴
5) (1/7)⁵ x (2/3)⁴ x (1/7)⁻⁸
6) (3)⁻⁶ x (6)⁶ x 27 x (8)⁻²
7) (3⁵ ÷ 3⁸)⁵ x 3⁶.
8) {(-3/2)²}⁻³
9) (1/2)⁻² + (1/3)⁻² + (1/4)⁻²
10) {(216)²⁾³}¹⁾²
11) 9³⁾² - 3 x 5⁰ - (1/81)⁻¹⁾²
12) ((3²)³ + (2/3)⁰ + 3⁵ x (1/3)⁴
13) (4⁻³ x 9⁻⁵ x b⁻⁴)/(4⁻⁵ x a⁻⁸ x b³)
14) (49 x t⁻⁵)/(7⁻³ x 10 x t⁻⁹)
15) If 27ʸ = 9/3ʸ, then find y.
16) If (5ⁿ x 5³ x 5⁻²)/5⁻⁵ = 5¹² then find n.
17) Find the value of n if 25pⁿ⁻³ = 1
18) Find the value of n if 7ⁿ = 343.
EXERCISE - E
1) Simplify:
a) 2²⁾³ x 2¹⁾³.
b) 3⁵⁾⁶ x 3²⁾³.
c) 4²⁾⁵ x 4⁻²⁾⁵.
d) 3¹⁾³/3¹⁾⁶.
e) 4⁶⁾⁷/4²⁾³.
f) 7¹⁾⁴/7¹⁾⁵.
g) 2¹⁾⁴ x 3¹⁾⁴.
h) 3⁵⁾⁸ x 5⁵⁾⁸.
i) 7²⁾³ x 3²⁾³.
j) (5³)¹⁾³.
k) (7¹⁾³)⁴.
l) (3¹⁾⁵)¹⁰.
m) 7¹⁾² x 7¹⁾³.
n) 11¹⁾²/11¹⁾⁴.
o) 7¹⁾² x 8¹⁾².
p) (3³)²⁾³.
2) Evaluate:
a) (36)¹⁾²
b) (27)¹⁾³
c) (32)¹⁾⁵.
d) (81)³⁾⁴.
e) (243)³⁾⁵.
f) (16)⁵⁾⁴.
g) (27)⁻¹⁾³.
h) (512)⁻¹⁾⁹.
i) (625)⁻³⁾⁴.
j) (27/64)⁻²⁾³.
k) (64/125)⁻²⁾³.
l) (81/16)⁻³⁾⁴.
m) (64)¹⁾⁶.
n) (81)⁻¹⁾⁴.
o) (256/625)⁻¹⁾⁴.
3) If a= 2 and b= 3, find the value of the following:
a) (aᵇ + bᵃ)⁻¹
b) (aᵃ + bᵇ)⁻¹.
4) Simplify:
a) {(243)³⁾⁵ x (25)³⁾²}/{(625)¹⁾² x (8)⁴⁾³ x (16)⁵⁾⁴}.
b) (3⁴⁰ + 3³⁹)/(3⁴¹ - 3⁴⁰).
c) 27⁻¹⁾³(27¹⁾³ - 27²⁾³).
d) (2¹⁾² x 3¹⁾³ x 4¹⁾⁴)/(10⁻¹⁾⁵ x 5³⁾⁵) ÷ (3⁴⁾³ x 5⁻⁷⁾⁵)/(4⁻³⁾⁵ x 6).
e) 3/(625)⁻¹⁾⁴ + 2/(343)⁻²⁾³ + 4/(243)⁻¹⁾⁵.
f) (64/125)⁻²⁾³ + 1/(256/625)¹⁾⁴ + √25/³√64.
g) (1³ + 2³ + 3³)¹⁾².
h) (5¹⁾³ x 25¹⁾³ x 125²⁾³)/625¹⁾².
i) (2/3)⁴(8/3)⁻¹²(32/3)⁶.
j) [{(81)¹⁾²}¹⁾⁴]².
k) 4/(216)⁻²⁾³ - 1/(256)⁻³⁾⁴.
l) {(2⁻¹ x 3²)/(2² x 3⁻⁴)}⁷⁾² x {(2⁻² x 3³)/(2³ x 3⁻⁵)}⁻⁵⁾²
5) Find the value of p in each of the following:
a) (2³)⁴ = (2²)ᵖ.
b) 27ᵖ = 9/3ᵖ.
c) 5ᵖ⁻⁴ x 2ᵖ⁻⁵ = 5.
d) (3/5)ᵖ (5/3)²ᵖ= 125/27.
6) Find the values of x if (2/3)ˣ(3/2)²ˣ= 81/16
No comments:
Post a Comment