Tuesday, 24 June 2025

FUNCTION, DIFFERENTIATION, APPLICATION OF DER, MATRIX, DETERMINANTS, COMPOUND INT, ANNUITY, UNIVERIATE DATA, BIVERTIA DATA, INDEX NUMBER, TIME SERIES

FUNCTION

1) If f(x)= (x²- 5x +6)/ (x²- 8x +12) show that f(2) is not defined and also find f(-5).       8/11

2) If f(x)=eᵃˣ⁺ᵇ,. show that eᵇ. f(x + y)= f(x).f(y).

3) If f(x)= |x| - |-x|. Where  |x| is the greatest integer not exceeding x, find the value of f(3.5) and f(-3.5).    0.5,7.5

4) Find the domain of definition of the function 5/√{(x +1)(x -3)}.     - ∞<x <-1 and 3<x < ∞

5) If f(x)= |x| - 2x, find f(-1), f(1).     3,-1

6) If f(x)= (ax - b)/(bx - a), show that f(a). f(1/a) - f(b) f(1/b)= 0.

7) Show that the function f(x, y)= (5x²- 7y²)/3y² is a homogeneous function.

8) If f(x)= (eˣ -1)/(eˣ +1) and f(a)= (1+ f(x))/(1- f(x)), then show that f(x + a)= f(x). f(a)

9) If f(x)= (1+ eˣ)/(1- eˣ) , then show that f(x) is an odd function.

10) If f(x)=x²- x, then show that f(h +1)= f(-h)

11) If f(x)= (ax + b)/(bx + a) show that f(x). f(1/x)= 1

12) If y= f(x)= (x + 1)/(x + 2), find f(y) and f{f(1/x)}.      (2x+3)/(3x +5), (2+ 3x)/(3+ 5x)

13) If f(x)= (x -1)/(x +1), then show that {f(a) - f(b)}/(1+ f(a)f(b))= (a - b)/(1+ ab)

14) If f(x)= (2x +1)/(2x²+1) , g(x)= 2f(2x), then find g(24).     22/51

15) If f(x +3)= 3x²- 2x +5, find f(x -1).   3x²- 26x +61

16) Find {f(x+ h) - f(x)} when f(x)= (1- x)/(1+ x).

17) A function is defined as follows 
f(x) = x when x > 0, = - x when x=0 obtain lim ₕ→₀₊ (f(h) - f(0))/h and lim ₕ→₀₋ f(h) - f(0)/h
What can you say about the derivative of f(x) at x=0.        The function does not exist.

18) Find the domain of definition of the following function:
a) (x +2)/√(x²- x -2).       ∞ ≤ x < -1, 2≤ x < 

b) (4x -5)/√(x²- 7x +12).       -∞ ≤ x < 3, 4≤ x < ∞

c) log((x²- 5x +6).            x> 3, x> 2 or -∞ ≤ x < 2, 3≤ x < 

d) (x²- -5x +6)/(x²- 8x +12).       Domain of the function is all values of x except 6.

19) Find the range of the function 2x/(4 + x²) where x is real     -1/2 ≤ y < 0, 0≤ y ≤ 1/2

20) If y= f(x)= (ax + b)/(CX + a), then show that f(y)= x.

21) If x is real, Find the range of the function x/(1+ x²).   -1/2≤ y ≤1/2

22) If f(x)= (ax - b)/(bx - a), show that f(a) - f(b)f(1/b)= 0





LIMITS 

1) im ₓ→₁ (x²- 2x +3)/(x +4).     2/5

2) lim ₓ→₀ (x²+ x -12)/(x -3).      7

3) lim ₓ→₃ (x²- 9)/(x -3).      6

4) lim ₓ→₂ (x²+ x -6)/(x²- x -2).   5/3

5) lim ₓ→ₐ (√x - √a)/(x - a).       1/2√a

6) lim ₓ→ₐ (x¹⁾³ - a¹⁾³)/(x - a).    1/3³√a²

7)  lim ₓ→∞(1- √x)/(1+ √x).       -1

8) lim ₓ→₋₄ [1/(x +4)  + 1/(x²-4)].    Does not exist 

9) lim ₓ→₂ (2x²- 7x +6)/(3x² -7x +2).    1/5

10)  lim ₓ→ₐ {√(2x +a) - √(x + 2a)}/(x - a).    1/2√3 a

11) lim ₓ→₂ (x²+ x -6)/(x²- x -2).    5/3

12) lim ₓ→₀ {√(a+ x) - √a}/x.       1/2√a

13) If lim ₓ→₂ (ax²- b)/(x -2)= 4, find the values of a and b.     1,4

14) lim ₓ→₁(x²+ 5x -6)/(x²- 3x +2).    -7

15) lim ₓ→₂ {√(x +7) -3}/(x -2).    1/6

16) lim ₓ→₀ {√(1+ 2x) - √(1- 3x)}/x.   5/2

17) lim ₓ→₃ (x²+ x - 12)/(x -3).    7

18) lim ₓ→₀ {√(x + h - √x}/h.    1/2√x

19) lim ₕ→₀ {f(1+ h) - f(1)}/h when f(x)= 1/x

20) lim ₓ→₃ (x -3)/{√(x -2) - √(4- x)}.    1

21) lim ₓ→₂(x²- 5x +6)/(x²- 3x +2).   -1

22) lim ₓ→ ₋ ₁ (2x² - x -3)/(x²- 2x -3).   5/4

23) lim ₓ→₀ {√(1+ x) -.√(1- x)}/x.     1

24) lim ₓ→₁ (x²- 1)/{√(3x -1) -.√(5x -1)}.   -4

25) lim ₓ→₁(x² -3x +2)/(x²- 4x +3).    1/2

26) lim ₓ→₋₁(2x²- x -3)/(x²- 2x -3).    -1

27) lim ₓ→₀ (eᵃˣ - eᵇˣ)/x.      (a- b)

28) lim ₓ→ₐ (3x⁴+ 2x²+ 1)/(x⁴+ 2x²+1).   3

29) lim ₓ→₁ (x²+ 4x -5)/(x -1).      6

30) Lim ₓ→₃ (x -3)/{√(x -2) - √(4- x)}.    1

31)  lim ₓ→∞ (4x²- 3x +2)/(5x⁴+ 2x²+3).      0

32)  lim ₓ→₀ x/{√(1+ x) - √(1- x)}..      1

33) lim ₓ→∞ (3x³ + 2x -1)/(4x³+ 3x²-2) .     3/4

34) lim ₕ→₀ {f(2+ h) - f(2)}/h where f(x)= 2x²- x +1.      7

35) lim ₓ→₂₅ {(√x -5)(x +1)}/(x²- 24x -25).       1/10

36) lim ₓ→∞ (3h⁴- 2h² +1)/(h⁴- 2h²+3).       3

37) lim ᵧ→₀ (1/y) {√(1+ 2y) - √(1- 2y)}.       2

38)  lim ₓ→₀ {(√1+ x²) - √(1+ x)}/{√(1+ x³) - √(1+ x)}.     1

39) lim ₓ→₅ (x³-125)/(x⁴- 625).       3/20

40) lim ₓ→∞ (x² + 3x +2)/(x³ + x -4).     0

41) lim ₓ→₀ {√(x²+ a) - √(a - x²)}/x².      1/√a

41) lim ₓ→₃ (x² + x -12)/(x²+2x - 15).     7/8

42) lim ₓ→₀ {√(1+2x) - √(1- 3x)}/x.       5/2

43) lim ₓ→∞ (5x²- 3x +7)/(3x²+ x +4).      5/3

44) lim ₓ→₋₄ [1/(x +4) + 8/(x²-4)].   Does not exist 

45) lim ₓ→₂ (2x²- 7x +6)/(3x²- 7x +2).     1/5

46) lim ₓ→₀ {f(x +h) - f(x)}/h, where f(x)= 1/√x. (x > 0).     -1/2√x³

47) lim ₓ→∞ (15x⁷ + 12x +17)/(5x⁷+ 9x²+12).     3

48) lim ₓ→₀  {√(a+ x) - √a}/2x.        1/4√a

49) lim ₓ→∞ (3x²- 4x +6)/(x²+ 6x -7).     3

50) limₓ→₀ (e³ˣ - e²ˣ + 2x)/x.     3

51)  lim ₓ→₀ (14ˣ - 7ˣ - 2ˣ  +1)/x².     Logₑ7 logₑ2

52) lim ₕ→₀ {f(2+ h) - f(2)}/h, where f(x)= 2x²- 7x +1.       1

53) lim ₓ→₀ ∈ ∞ lim ₓ→ₐ lim ₙ→∞

54) lim ₓ→₃ {x - √(x-a)(x -b)/(x²+2x - 15).         (b + a)/2

55) lim ₓ→₃ (√x - √3)/(x²- 9).          1/12√3

56) lim ₓ→∞{1/(1+ n) + 1/(2+ n) + 1/3- n) + ....+ 1/2n}.       0





CONTINUITY 

1) f(x)= (x²- 9)/(x -3). When x≠ 3. State the value of f(3) so that f(x) is continuous at x=3.

2) Find f(2) so that f(x)= (x²- 4)/(x -2) may be continuous at x=2.

3) For what value of f(3), f(x)= (x²-9)/(x -3) will be continuous at x= 3 ?

4) Draw the graph of f(x)= x²/x and g(x)= x. Rough sketches only are to be given. From the graphs so drawn state which of the two functions is not continuous? What is the point of discontinuty ? Indicate the point of discontinuty of the function (2x²+ 6x -5)/(12x²+ x -20).

5) Sketch the graph of f(x)= |x|/x . From the graph, examine continuity of f(x) at x=0.

6) Sketch the graph of f(x)= |x|. From the graph, examine continuity of f(x) at x=0.

7) Sketch the graph of f(x)= 1 for x ≥ 0
                                            = -1 for x ≤ 0
From the graph discuss whether lim ₓ→₀ f(x) exist or not 

8) A function f(x) is defined as follows 
f(x)= 3+ 2x for -3/2≤ x < 0
      = 3- 2x for 0≤ x < 3/2
      = -3 - 2x for x ≥ 3/2
Show that f(x) is continuous at x=0 and discontinuous at x= 3/2.

9) Sketch the graph of 
f(x)= 2x +1 when x≥ 1
      = 2x -1 when x < 1
From the graph examine whether f(x) is continuous at x= 1 or not 

10) Draw the graph of the following function 
f(x)= 1 when x > 0
      = 0 when x = 0
      = -1 when x < 0
Examine the continuity of f(x) at x=0 from the graph.

11) Sketch the graph of 
f(x)= 3x +1 when x ≥ 1
      = 3x -1 when x < 1
From the graph examine whether f(x) is continuous at x= 1 or not 

12) f(x)= (x²-9)/(x -3), when x≠ 3. State value of f(3) so that f(x) is continuous at x= 3.

13) Sketch the graph of the function 
f(x)= - x when x ≤ 0
      = x when 0< x.
From the graph examine the continuity of f(x) at x= 0.         Con

14) Sketch the graph of the function
 f(x)= 3+ 2x when x ≤ 0
          3 -2x when x> 0
From the graph examine the continuity of f(x) at x=0.     C

15) Sketch the graph of the function defined by 
f(x)= x -1 when x> 0
      = 1/2 when x =0
      = x +1 when x< 0
From the graph examine continuity of f(x) at x = 0.      D

16) Draw the graph of the following function 
f(x)= 2x -1.  0≤ x ≤ 4
      = 2- x²    -4< x < 0
State from the graph whether f(x) is continuous at x = 0.

17) Draw a rough sketch of the function f(x)= x/|x| and discuss its continuity at x=0.     D

18) Examine the continuity of the function defined by 
f(x)= x -1 when x> 0
          =1/2 when x= 0
        = x +1 when x < 0

19) A function f(x) is defined as follows:
f(x)= |x -3|/(x -3), if x ≠3
      =.   1               if x= 3
Discuss the continuity of f(x) at x = 3.    D

20) Given f(x)= (x²-4)/(x -2), if x≠ 2. Find the value of f(2) and show that  f(x) is continuous at x = 2.

21) Discuss continuity of f(x) at x = -2, where 
f(x)= {x + (x +2)/|x +2|, if x≠ -2
     = -1, x = -2.                          C

22) Examine the continuity of the function 
f(x)= 2- 3x when x > 0
      = 2       when x = 0
      = 2+ 3x when x< 0 at x = 0.      C

23) If f(x)= (6- 4x)/(1+ 2x + 2x²), find f(0). Is the function continuous at x= 0 ?     Y



DIFFERENTIATION 


Find the first principle the derivative of 

1) 1/x³.       -2/x³

2) x²- 2x.             2x - 2

3) √x at x = 4.        1/4

4) 2x³+ 3.             6x²

5) 3x³ + 7.       9x²

6) 5x²+ 2.         10x

7) x³+ 4 at x = 1.       3

8) Evaluate lim ₕ→₀ {f(x+ h) - f(x)}/h where f(x)= 2x²+ 3x - 4.      4x +3

9) (x -1)³ at x=1.        0

10) x³.        3x²

11) (3- 5x)¹⁾².      (-15/2)+ √(3- 5x)

12) 2ˣ logx.           2ˣ(1+ x logx log2)/x.

13) 


DIFFERENTIATE

1) y= ₑax²+ bx + c.       (2ax + b)ₑax²+ bx + c.

2) x/(eˣ -1).        (eˣ(1- x) -1)/(eˣ - 1)².

3) 2ˣ. x⁵ .        2ˣx⁴(5+ x log 2)

4) (x² - 3x -5)¹⁾².      (3(2x -3)√(x²- 3x -5))/2

5) (2- 5x)¹⁾².        (15/2) √(2- 5x).

6) x⁵⁾² logx.            x³⁾²(1+ (5/2) logx)

7) If y= x/√(1- x²) then show that (1- x²) dy/dx = y/x.

8) x= at², y= 2at..        1/t

9) x²+ y²= 2a².         -x/y

10) 3⁴ˣ + 3/³√x.         3⁴ˣ. 4 logè - 1/³√x⁴

11) (5- 4x)/(5+ 4x).      -40/(5+ 4x)²

12) log(x + √(x²+ a²)).            1/√(x²+ a²)

13) If xᵐ yⁿ = (x + y)ᵐ⁺ⁿ show that dy/dx = y/x.

14) x². 5³ˣ.       x. 3³ˣ(2+ 3x log5)

15) (x²- 2x -3)/(x - 1).     (x²- 2x +5)/(x - 1)²

16)  xʸ. yˣ= 1.     -(y + x logy)y/(y logx + x)x

17) (x²+1)/(x -1).       (x²- 2x - )/(x - 1)²

18) xˣ.     (1+ log x)xˣ

19) xʸ + y = 1.        yxʸ⁻¹/(1+ xʸ log x)

20) 10ˣ. x¹⁰.         10ˣ. x⁹(x log 10 + 10)

21) x²/a² + y²/b² = 1.     - b²x/a²y

22) xʸ + xy = 8.      -y(1+ xʸ⁻¹)/x(xʸ⁻¹ log x +1)

23) xˣ + x².       xˣ + xˣ log x + 2x

24) √(x²+ a²).       x/√(x²+ a²)

25) (x²+ 1)eˣ.        eˣ(x +1)²

26) (1+ x)ˣ.          x(1+ x)ˣ⁻¹ + (1+ x)ˣ log(1+ x)

27) x³+ 3x²y + y³ = a³.         -(x²+ 2xy)/(x²+ y²)

28) 3x²- x²y + 2y³= 0.         (2xy - 6x)/(6y²- x²)

29) 7²ˣ+ 2ˣ.     7²ˣ2 log 7 + 2ˣ log 2.

30) x= y log(x²y²).      (x - 2y)/(2(log xy +1).

31) y= xˣ.        (1+ logx)xˣ

32) x³+ y³= 3axy.       (ay - x²)/y²- ax)

33) x²/a²+ 2xy/h + y²/b²= 1.       -(a²y + hx)b²/(b²x + hy)a².

34) x= ct, y= c/t.        - 1/t²

35)  eˣʸ = 4(1+ xy) and eˣʸ ≠ 4 then show dy/dx = -y/x.

36) xʸ = yˣ.       (x logy - y)y/(y logx - x)x.

37) y=√{(1+ x)/(1- x)}.       1/{(1- x)√(1- x²)}

38) x= t/(1+ t), y= t/(1- t).       {(1+ t)/(1- t)}²

39) x⁴ₑ3x².       2x³(2+ 3x²)ₑ3x²

40) 3x²+ 2xy - y²= 4.        -(y + 3x)/(x - y)

41) aˣ + xʸ = 4.        -(aˣ log a + yxʸ⁻¹)/(xʸ logx)

42) xˣ +2.      (1+ logx)xˣ + 2ˣ log

43) x= log(xy).       (x - y)/x(1+ log(xy))

44) x= ct³, y= c/t².         -1/t⁶

45) s= t¹⁻ᵗ + t⅖ find ds/dt.       t¹⁻ᵗ{(1- t)/t   logt)} + 2t

46)  (eˣ +1)y= eˣ -1.     e(1- y)/(eˣ +1)

47) y= (xˣ)ˣ.                   ₓxˣ⁺¹(1+ 2 logx)

48) yˣ = eˣ.        (1/e  - logy)y/e

49) x= √(1+ t); y= √(1- t) at t= 1/2.        - √{(1+ t)/(1- t)}

50) xy = eˣ⁻ʸ show that dy/dx = logx/(1+ logx)²

51) log{√(x - a) + √(x - b)}.     1/2√{(x - a)(x - b)}

52) x⁴+ x²y²+ y⁴= 0.      -x(2x² + y²)/y(x²+ 2y²)

53) y= (1+ 2x)ˣ .        (1+ 2x)ˣ .{2x/(1+ 2x) + log(1+ 2x}

54) y= log(ax²+ bx + c).     (2ax + b)/(ax²+ bx + c).

55) x= 1/(1+ t), y= 1/(1- t).           {(1+ t)/(1- t)}²

56) y= xˣ+ log(3x²+ 4x+ 5).         xˣ(1+ logx). (6x+4)/(3x²+ 4x +5)

57) x= 3at/(1+ t³), y= 3at²/(1+ t³).      (2t - t⁴)/(1- 2t³)

58) y= x²/(a²- x²) at x=1.        2a²/(a²- 1)²

59) y= e²ᵐˣ + e⁻²ᵐˣ show that d²y/dx²- 4m²y =0

60) ₓxˣ.          ₓxˣ{xʸ/x + log xˣ(1+ logx)}

61) x²ᵖ yᑫ = (x + y)²ᵖ⁺ᑫ.       y/x

62) x= 2at/(1+ t)², y= (1- t²)/(1+ t²).         -2t/a(1- t²)

63) xˣ + ₑax²+ bx + c.          xˣ(1+ logx) + ₑax²+ bx + c(2ax + b)

64)  If y= (x + √(1+ x²))ᵐ, show that (1+ x²)y₂ + xy₁ - m²y=0

65) If y= (x -2)/(x +2), show that 2x dy/dx = 1- y².

66) If yˣ = eʸ⁻ˣ, show that dy/dx = (logₑy)²/logy.

67) Given x= t + 1/t and y= t - 1/t, find value of d²y/dx⅖ at the point t=20.         

68) If x³- 2x²y²+ 5x + y -5=0, then find d²y/dx² at x= 1 , y= 1

69) If f(x)= {(a + x)/(b + x)}ˣ + 2x, show that f'(0)= 2 + log(a/b).

70) If x⁴ + x³y³+ y⁴= 0

71) f(x)= {(a+ x)/(b+ x)}ᵃ⁺ᵇ⁺²ˣ show that f'0)= (2 log(a/b) + (b²- a²)/ab)(a/b)ᵃ⁺ᵇ



EULER'S THEOREM 

1) State Euler's theorem for homogeneous function of 2 variables of degree 'n'.    






MAXIMUM AND MINIMUM 

1) Find maximum and minimum values of the function y= x³- 3x -1.      3,-1

2) Find the maximum or minimum point of the function y= 5- x - x²

3) Show that the maximum value of the function 2x + 1/2x is less then its minimum value.       

4) Examine x³- 9x²+ 24x -12 of maximum and minimum values of x³- 9x²+ 24x -12.

5) Show that the function f(x)= 12 -24x - 15x²- 2x³ has a maximum at x= -1, minimum at x= -4 and point of inflexion at x= 5/2.

6) Show that the the maximum value of x³+ 1/x³ is less than its minimum value.

6) Find the maximum and minimum values of y= x/{(x -1)(x -4)}.      -2

7) Determine whether the following 2x³/3 - 6x²+ 20x - 5 has a maximum or a minimum.

8) Show that maximum value of f(x)= x +1/x is less than its minimum value.

9) Examine whether the curve y -3 = 6(x - 2)⁵ has a point of inflexion at (2,3).

10) Show that maximum value of 2x + 1/x is less than its minimum value.

11) Find the point of inflexion of the curve y+ 5= x³- 3x²+ 9x.

12) Find the maximum and minimum value of the function 2x³- 15x²+ 36x.     28,27

13) Divide the number 20 in two parts in such a way that their product will be maximum.   10,10

14) If x+y= 2, show that the maximum value of (4/x + 36/y is less than its minimum value.


APPLICATION OF DERIVATIVES (COMMERCE)

1) A firm produces x tons of a valuable metal per month at a total cost c given by:
C= Rs (x³/3 - 5x² + 75x +10).
Find at what level of output the marginal cost attains its minimum.     5

2) A firm produces x units of output per week at a total cost of Rs (x³/2 - x² + 5x +3).
Find at what level of output the marginal cost and the average variable cost attains their respective minima.        2/3

3) A radio manufacturer finds that he can sell x radios per week at Rs p each where p= 2(100 - x/4). His cost of production of x radios per week is Rs (120x + x²/2). Show that his profit is maximum when the production is 40 radios per week. Find also his maximum profit per week.     40, Rs1600

4) A radio manufacturerproduces  x sets per week at total cost of Rs x²+ 78x + 2500. He is monopolist and the demand function for his product is x= (600- p)/3 when the price is Rs p per set. Show that the maximum net revenue (profit) is obtained when 29 sets are produced per week. What is the monopoly price?       Rs405

5) A manufacturer can sell x items per month at a price p= 300 -2x rupees. Manufacturer's cost of production y rupees of x items is given by y= 2x + 1000. Find the number of items to be produced per month to yield the maximum profit.     75

6) The cost of manufacturing a certain article is given by the formula C= 5+ 48/(x + 3x²) where x is the number of articles manufactured. Find the minimum value of C.      41

7) The total cost function C for producing x units of an article per day is given by C= Rs (400 -16x + x²). Find the average cost function and the level of output at which their function is minimum.      20 

8) If the cost function for x units is given by C= Rs (400- 15x - x²) obtain the 
a) average cost 
b) average variable cost.     400/x - 16 - x, (-6- x)

9) The total cost C, of making x units of a product is C= axⁿ + b, where a,b,n are positive constants. Find marginal cost and marginal average cost.     naxⁿ⁻¹, axⁿ⁻¹ + b/x, a(n -1)xⁿ⁻² - b/x²



INTEGRATION 

1) ∫ x/(x +1) dx.       x - log(x +1)

2) ∫ √x(x½+ 3x +4)dx.      (2/7) √x⁷ + (6/7) √x⁵+ (8/3) √x

3) ∫ (x²+ 1)²/x³ dx.      x²/2 + 2 logx - (1/2x²)

4) ∫ 3dx/(x²-1).       (3/2) Log{x -1)/(x +1)

5) ∫ √{(x +1)/(x -1)} dx.       √(x²-1) + log|x + √(x²-1)|

6) ∫ x²/³√(3x +5) dx.      (1/8) ³√(3x +5)⁸ - 2 ³√(3x +5)⁵ + (25/2) ³√(3x +5)²

7) ∫ logx/(x +1)² dx.        - log(x +1) + log|x/(x +1|

8) ∫ x⁴/(³√(2x⁵+3) dx.     (3/20)³√(2x⁵+ 3)²

9) ∫ (x -2)eˣ/(x -1)² dx.     eˣ/(x -1)

10) ∫ dx/(eˣ+1).      eˣ/(eˣ +1)

11) ∫ x √(x²-1) dx.     (1/4) (x⁴- 2x²+1)

12) ∫ (1+ 2/√x +3) dx.       4√x(√x + 1)

13) ∫ x³/(x -1) dx. .       (2x³+ 3x²+ 6x -11 + 6 log(x -1)/6

14) ∫ (4x -3)/x²  dx.     32x²- 144x + 27/x + 108 logx

15)  ∫ (x -2) dx/³√(x²- 4x -5).      (3/4) ³√(x²- 4x -5)²

16) ∫ dt/(2t²+ 3t +1).         (1/2) Log|(2t+1)/(t+1)|

17) ∫ (x +1)²/√x dx.          2∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ ∫∫∫∫∫∫∫∫∫∫∫∫∫∫  ∫∫∫∫∫ 







) Find the slope of the curve at the point t=2 when x= t²- 3., y= 2t +1.      1/2

) Find the gradient of the curve log(xy)= x²+ y² at the point (1,1).      -1

) State Rolle's Theorem.







DIFFERENTIATION 

No comments:

Post a Comment