EXERCISE - A
a) 2x - 4≤ 0. (-∞,2]
b) -3x +12< 0. (4, ∞)
c) 4x - 12≥ 0. [3, ∞)
d) 7x + 9 > 30. (3, ∞)
e) 5x -3< 3x +1 when
i) x is real number. (- ∞,2)
ii) x is integer number. {..... -4,-3,-2,-1,0,1}
iii) x is a natural number. {1}
f) 3x + 17 ≤ 2(1- x). (-∞,-3]
g) 2(2x +3) -10≤ 6(x -2). [4, ∞)
h) (2x -3)/4 + 9 ≥ 3+ 4x/3. (- ∞, 63/10]
i) (5x -2)/3 - (6x -3)/5 > x/4. (4, ∞)
j) (1/2) (3x/5 + 4)≥ (x -6)/3. (- ∞, 120]
k) 3(x -2)/5 ≥ 5(2- x)/3. [2, ∞)
l) 1/(x -2) < 0. (- ∞,2)
m) (x +1)/(x+ 2) ≥ 1. (- ∞, -2)
n) (x -3)/(x -5) > 0. (- ∞,3) U (5, ∞)
o) (x -2)/(x+5) > 2. (-12,-5)
p) (2x +4)/(x -1) ≥ 5. (1,3]
q) (x +3)/(x -2) ≤ 2. (- ∞,2) U [7, ∞)
EXERCISE - B
Solve the following linear inequations in R
1) Solve: 12x < 50, when
i) x ∈ R. (-∞, 25/6)
ii) x ∈ Z. {...-3,-2,-1,0,1,2,3,4}
iii) x ∈ N. {1,2,3,4}
2) Solve: - 4x > 30, when
i) x ∈ R. (- ∞, -15/2)
ii) x ∈ Z. {..., -9,-8}
iii) x ∈ N. φ
3) Solve: 4x -2 < 8, when
i) x ∈ R. (- ∞, 5/2)
ii) x ∈ Z. {....-2,-1,0,1,2}
iii) x ∈ N. {1,2}
4) 3x -7 > x +1. (4, ∞)
5) x +5 > 4x - 10. (- ∞,5)
6) 3x + 9 ≥ - x + 19. [5/2, ∞)
7) 2(3- x) ≥ x/5 + 4. (- ∞, 10/11]
8) (3x -2)/5 ≤ (4x -3)/2. [11/14, ∞)
9) - (x +3)+4 < 5 - 2x. (- ∞, -2)
10) x/5 < (3x -2)/4 - (5x -3)/5. (- ∞, 2/9)
11) 2(x -1)/5 ≤ 3(2+ x)/7. [44, ∞)
12) 5x/2 + 3x/4 ≥ 39/4. [3, ∞)
13) (x -1)/3 + 4 < (x -5)/5 - 2. (- ∞, -50)
14) (2x +3)/4 - 3 < (x -4)/3. - 2. (- ∞, -13/2)
15) (5- 2x)/3 < x/6 - 5. (8, ∞)
16) (4+ 2x)/3 ≥ x/2 - 3. [-26, ∞)
17) (2x +3)/5 - 2 < 3(x -2)/5. (-1, ∞)
18) x -2 ≤ (5x +8)/3. [-7, ∞)
19) (6x -5)/(4x +1) < 0. (-1/4, 5/6)
20) (2x -3)/(3x -7) > 0. (- ∞, 3/2) U (7/3, ∞)
21) 3/(x -2) < 1. (- ∞,2) U (5, ∞)
22) 1/(x -1) ≤ 2. (- ∞,1) U[3/2, ∞)
23) (5x +8)/(4 - x) < 2. (-∞,0) U (4, ∞)
24) x/(x -5) > 1/2. (- ∞, -5) U(5, ∞)
EXERCISE - C
∞
∈ φ
No comments:
Post a Comment