LIMIT
BOOSTER - A
1) lim ₓ→∞ (sin⁴x - sin²x +1)/(cos⁴x - cos²x +1) is equal to
a) 0 b) 1 c) 1/3 d) 1/2
2) lim ₓ→₀ x(eˣ -1)/(1- cosx) is equal to
a) 0 b) ∞ c) -2 d) 2
3) The value of lim ₓ→₂ [√{1+ √(2+ x)} - √3]/(x -2) is
a) 1/8√3 b) 1/4√3 c) 0 d) none
4) lim ₓ→∞ [√[x + √{x + √x}] - √x] is equal to
a) 0 b) 1/2 c) log2 d) e⁴
5) lim ₓ→∞ {(x +1)¹⁰+ (x +2)¹⁰+ ....+ (x + 100)¹⁰}/(x¹⁰ + 10¹⁰)
a) 0 b) 1 c) 10 d) 100
6) The value of lim ₓ→₁ (₂₋ₓ)tan(πx/2) is
a) ₑ(-2/π) b) ₑ(1/π) c) ₑ(2/π d) ₑ(-1/π)
7) lim ₓ→∞(1/e - x/(x +1))ˣ is equal to
a) e/(1- e) b) 0 c) ₑ{e/(1- e)} d) does not exist
8) lim ₓ→₀ (1/x) cos⁻¹{(1- x²)/(1+ x²)} is equal to
a) 1 b) 0 c) 2 d) none
9) The value of limₘ→∞ {cos(x/m)}ᵐ is
a) 1 b) e c) e⁻¹ d) none
10) If f(x)= lim ₓ→∞ n(x¹⁾ⁿ -1), then for x> 0, y> 0, f(xy) is equal to
a) f(x) f(y) b) f(x)+ f(y) c) f(x) - f(y) d) none
11) lim ₙ→∞ [{n/(n +1)}ᵅ + sin(1/n)]ⁿ (where α ∈ Q) is equal to
a) e⁻ᵅ b) - α c) e¹⁻ᵅ d) e¹⁺ᵅ
12) lim ₙ→∞ ²⁰ₙ₌₁∑ cos²ⁿ (x -10) is equal to
a) 0 b) 1 c) 2 d) 4
13) The value of lim ₓ→∞ {(₂xⁿ)^(1/eˣ) - (₃xⁿ)^(1/eˣ)}/xⁿ (where n ∈ N) is
a) log n(2/3) b) 0 c) n log n(2/3) d) not defined
14) lim ₓ→₀ sin(x²)/{log(cos(2x² - x))} is equal to
a) 2 b) -2 c) 1 d) -1
15) If f(x)= eˣ, then limₓ→₀ (f(x))¹⁽ᶠ⁽ˣ⁾⁾ where {} denotes the fractional part of (x) is equal to
a) f(1) b) f(0) c) f(-∞) d) does not exist
16) lim ₓ→∞ {ₑ(1/x²) -1}/{2 tan⁻¹(x²) - π} is equal to
a) 1 b) -1 c) 1/2 d) -1/2
17) lim ₓ→₀ {cos(tanx) - cosx}/x⁴ is equal to
a) 1/6 b) 1/3 c) 1/2 d) 1
18) lim ₓ→₀ (xⁿ - sin xⁿ)/(x - sinⁿx) is non-zero finite, then n must be equal
a) 4 b) 1 c) 2 d) 3
19) lim ₓ→₂ (ₐ ₑ1/|x +2| ₋ ₁)/(₂ - ₑ1/|x+2|) = limₓ→₂(x⁴ - 16)/(x⁵ + 32) then a is
a) sin(3/5) b) 1 c) sin(2/5) d) sin(1/5)
20) lim ₓ→∞ {(x +5) tan⁻¹(x +5) - (x +1) tan⁻¹(x +1)} is equal to
a) π b) 2π c) π/2 d) none
21) The value of lim_1/√2 (x - cos(sin⁻¹x))/(1- tan(sin⁻¹x)) is
a) -1/√2 b) 1/√2 c) √2 d) -√2
22) The value of lim ₓ→₁ (1- √x)/(cos⁻¹x)² is
a) 4 b) 1/2 c) 2 d) none
23) lim ₓ→π/2 (sin(cosx))/(cos(x sinx)) is equal to
a) 0 b) π/2 c) π d) 2π
24) If limₓ→₀ (xⁿ sinⁿx)/(xⁿ - sinⁿx) is non-zero finite, then n is equal to
a) 1 b) 2 c) 3 d) none
25) lim ₓ→∞ (1+ x + x²)/(x logx)³) is equal to
a) 2 b) e² c) e⁻² d) none
1b 2d 3a 4b 5d 6c 7d 8d 9a 10b 11c 12b 13b 14b 15d 16d 17b 18b 19c 20b 21a 22d 23b 24b 25d
BOOSTER - B
₁₂₃ₙⁿₙ→ᵣ₌ₙᵣ₋₁³ⁿₖ₌ ₁₂ₙ²ₓ→ᵣ₌₀²²²²θ→₀θθθθ∈ₓ→ₐ²²²²ₜ→∞ₙ→∞¹⁾ⁿ²²²⁻¹ₓ→₀²⁺ₑ ₙ→∞ⁿₖ₌₁ ²¹⁾ˣ¹⁾ˣ¹⁾ˣ¹⁾ˣ⁴⁵³²⁵⁴²³∞ₓ→₀ₓ→∞ˣ⁻¹¹⁾²⁻¹⁾²ₓ→₀¹⁾ˣ³¹⁾ˣ²³ₓ→₀ᶜᵒˢˣₓ→₁₂ₙₓ→²²²²⁻¹²ₓ→
₀₁₂₃₄₅₆₇₈₉ₙₐₓ
No comments:
Post a Comment