Friday, 24 May 2019

TANGENT & NORMAL

TANGENT & NORMAL

1) Find the gradient/ Slope:


a) y=x²-3x+1 at (2,-1).                  1

b) y= 2x²+3 sinx at x=0.                3

c) x³ - x at x=2.                              11

d) x² - sinx at x=0.                         -1

b) y²=2x²-3x+5 at(1,2).                1/4

c) y= 3x/(x²-1). at (0,0).               -3

d) log(xy)= x²- y² at (1,1).           1/3

e) y= log x at (1,0) and (e³,3).  1,1/e³

f) x = y²-4y at the point on y-axis.  -1/4, 1/4

g) y=(x+1)(x-2) at (i)x-axis(ii) y-axis. -3, 3 and -1

h) calculate the gradient of the curve y= 10ˣ at the point, where it intersects the y-axis.             Log 10


2) Find the Slope of the Tangent & Normal of the following:

a) y= √x³ at x= 4.                     3, -1/3 

b) y=√x at x=9.                    1/6,-6

c) y= x³ - x at x= 2.              11, -1/11

d) y= 2x²+3sinx at x= 0.         3, -1/3

e) x= a(t - sint), y= a(1+ cost) at t= -π/2.         1, -1

f) x= a cos³t), y= a sin³t) at t= π/4.         -1, 1

g) x= a(t - sint), y= a(1- cost) at t= π/2.         1, -1

h) y= (sin 2x+ cotx+2)² at t= π/2.         -12, 1/12

I) x² + 3y + y²= 5 at (1,1).   -2/5, 5/2 

j) xy = 6 at (1,6).                     -6, 1/6


3) Find the values of

a) Slope of the curve xy +ax + by = 0 at (1,1) is 2. Find of a , b.         1,-2

b) Slope of the curve xy +ax + by= 3 at (1,1) is 2. Find of a , b.           6,-4 

c) If the tangent to the curve y= x³+ ax + b at (1,-6) is parallel to the line x-y+5=0, a,b is .                          -2,-5


4) Find the point on the curve

a) y=x²-x-8 at tangent is parallel to  x-axis.                             1/2,  -33/4    
b) y= x³/3 -x²+2 tangent is parallel to x-axis.                       (0,2),(2,2/3)

c)  y= x³- 2x² - x at which the tangent lines are parallel to the line y= 3x-2.            (2,-2),(-2/3,-14/27) 

d) y= x²-4x+3 at which the normal is parallel to a line whose slope is 1/2          (1,0).

e) y= x³- 3x at where the tangent is parallel to the chord joining (1,-2), (2,2).          ±√(7/3),±2/3√(7/3)

f) y= x³- 2x²- 2x at which the tangent is parallel to a line y= 2x -3.    (2,-4)(-2/3, 4/27)

g) y²= 2x³ at which the slope of the tangent is 3.                       (2,4)

h) xy+4=0 at which the tangent are inclined at an angle of 45° with the x-axis.               (2,-2),(-2,2)

I) y= x² where the slope of the tangent is equal to the x-cordinates of the point.                             (0,0)

j) y²+x²-2x- 4y+1= 0, the tangent is parallel to x-axis.             (1,0),(1,4)

k) y= x² does the tangent make an angle 45° with the x-axis.   (1/2,1/4)

l) y= 3x²-9x+8 does the tangent are equally inclined with the axes.  (5/3,4/3),(4/3,4/3)

m) y= 2x²-x+1 is the tangent parallel to the line y= 3x+4.                 (1,2)

n) y= 3x²+4 at which the tangent perpendicular to the line whose slope is -1/6.                 (1,7)

o) x²+ y²=13, the tangent at each one of which is parallel to the line 3y + 2x= 7.                 (2,3), ((-2,-3)

p) 2a²y=x³- 3ax² where the tangent is parallel x-axis.         (0,0),(2a,-2a)

q) y= x²- 4x+5 is the tangent perpendicular to the line 2y+x =7.        (3,2)

s) x²/4+ y²/25=1 is the tangent parallel to the 

 i) x-axis.                             (0,5),(0,-5)

 ii) y-axis                             (2,0),(-2,0)

t) 0= x² + y² - 2x -3 is the tangent parallel to the line x-axis.       (1,±2)

u) x²/9 + y²/16= 1 is the tangent are parallel to 

i) x-axis.                             (0,-4),(0,4)

ii) y-axis.                           (3,0),(-3,0)

v) y= x³ where the slope of the tangent is equal to the x-cordinates of the point.              (0,0),(1/3,1/27)

w) Show that the tangent to the curve y= 7x³ +11 at the point x= 2 and x= -2 are parallel.


5) Find the Equation of Tangent:

a) y²= 4ax at (0,0).                    x=0

b) y=x²-4x+2 at (4,2).          y= 4x-14

c) y= -5x² +6x+7 at (1/2,35/4).   4x -4y+33

d) x² + 3xy+y²= 5 at (1,1).    x+y= 2

e) x²+y²=25 at (3,-4).        3x-4y= 25 

f) x²/a² + y²/b²= 1 at (m,n).       a²ny + b²mx- a²n²- b²m²= 0.

g) ay² = x³ at (am², am³).   3mx-2y- am³= 0.

h) y= x²+ 4x+1 at the point whose abscissa is 3.        10x- y-8= 0

i) y²= x³/(4-x) at (2,-2).        2x+y-2=0

j) x²/a²  - y²/b² =1 at (a sect,btant).     bx sect - ay tant = ab.

k) 9x² +16y²=288 at (4,3).     3x+4y= 24

l) x² +4y² =25 at whose ordinate is 2.                  3x+8y=25 & 3x-8y=25
m) y= x-sinx cosx at x =π/2.    4x-2y-π=0

n) y²= 4ax at (at², 2at).      ty= x+at²

o) x= cost, y= sint, at t=π/4.   x+y -√2=0

p) y= 2 sinx + sin2x at x=π/3.    2y-3√3=0

q) x=¢+sin¢, y=1+cos¢ at ¢=π/2.  2x+2y = π+4.

r) x= 1 - cost, y= t - sint at t= π/4.    (√2-1)x - y +π/4 +2 - 2√2= 0

s) y= cot²x - 2 cotx +2 at x= π/4.   y=1

t) √x+√y=1 at (1/4,1/4).         2x+2y-1=0 

u) √x+√y=a at (a²/4,a²/4).   x+y= a²/2

v) x= sin3t, y= cos2t at t=π/4.    2√2 x - 3y -2= 0

w) y= (x²-1)(x-2) at the point where the curve cuts the x-axis.    -6x+y=6, 2x+y= 2, y= 3x-6.


6) Find the Equation of Normal:

a) y= 2x² + x -1 at (1,2).      x+2y= 11

b) y= x² - 2x +5 at (2,5).      x+2y= 12

c) y= x²+ 4x+1 at the point whose abscissa is 3.               x+10y= 223

d) 9x²+ 4y²= 25 at (1,-2).    8x+ 9y+ 10 = 0

e) 4x²+ 9y²= 72 at (3,2).      3x-2y= 5

f) x²+ y²-6x- 4y+8=0 at (1,1).    x-2y+1 = 0

g) x²+ y²-4x- 13=0 at (1,4).   0=4x+y-8

h) y² = 4ax at (0,0).                       y= 0

i) y=x²+4x+1 at x=3.    x+10y = 223

j) √x +√y =1 at (1/4,1/4).         y= x

k) y²= x³/(4-x) at (2,-2).      2y-x+6= 0

l) xy = c² at (ct, c/t).    t³x-ty-c(t⁴-1=0

m) ³√x²+ ³√y²= ³√a² at (asin³t, acos³t). x sint - y cost - a cos 2t =0

n) x²/a² + y²/b² = 1 at (acost, b sint).   ax sint - by cost = (a²-b²) sint cost.

o) x²/a² - y²/b² = 1 at (a sect, b tan t).     ax tant + by sect = (a²+b²) sect tan t.

p) x= cost, y= sint, at t=π/4.       y= x

q) x= 1- cost, y = t - sint at t= π/2.     2(x+y)=π 

r) x= 3 cost - cos³t, y= 3 sint - sin³t at t= π/4.          y= x 

s) y= 2 sin² 3x at x=π/6.    

 

7) Find the equation of the tangent line to the curve y= x²+ 4x -16 which is parallel to the line 3x-y+1= 0.    12x -4y-65= 0.

8) Find the equation of the tangent to the curve y= 2x²+ 7 which is parallel to the line 4x-y+5= 0.   4x -y+5= 0.

9) Find the equation of the tangent line to the curve y= x² - 2x +7 which is 

a) parallel 2x-y+9= 0.      2x -y+3= 0

b) perpendicular to the line 5y -15x=13.                12x +36y-227= 0

10) Find the equation of the tangent line to the curve y= 2x² +7 which is parallel to the line 4x-y+3= 0.    y- 4x -5= 0

11)  Find the equation of the tangent line to the curve y²= 8x, which is inclined at an angle 45° with the x-axis.             x - y + 3= 0.

12) Find the equation of the tangent line to the curve y= 1/(x -3), x≠ 3 with slope 2.                   There is no tangent to the curve that has slope 2.

13) Find the equation of the tangent line to the curve y= √(3x - 2) which is parallel to the line 4x- 2y+5= 0.    48x - 24y- 23= 0.

14) The equation of the tangent at (2,3) on the curve y²= ax³+ b is y= 4x -5. Find the values of a,b.     2,-7

15) Find the equation(s) of the tangent(s) line to the curve y= 4x³-3 x +15 which is perpendicular to the line x+9y+3= 0.          9x - y- 3= 0, 9x-y+13= 0.

16) Find the equation of the normal line to the curve y= x³+ 2x +6 which is parallel to the line x+ 14y+4= 0. x +14y+86= 0, x+14y-254= 0 

17) Find the equation of the normal line to the curve y= x log x which is parallel to the line 2x- 2y+3= 0.    x - y-= 3/e².


18) Find the angle of intersection

a) y²=x and x²=y.          π/2, tan⁻¹3/4

b) y=x² and x²+y²=20.      tan⁻¹9/2  

c) 2y²= x³ & y²= 32x.   π/2,tan⁻¹1/2

d) x²/a² +y²/b² =1 and x²+y²=ab.   tan⁻¹{(a-b)/√(ab)}

e) x²+y²-4x-1=0, x²+y²-2y-9=0.   π/4

f) x²+4y²= 8 and x²- 2y²=2.    tan⁻¹3

g) x²= 27y and y²=8x.        tan⁻¹9/13

h) x²+y²= 2x and y²=x.        tan⁻¹1/2

I) xy= 6 and x²y=12.          tan⁻¹3/11

j) y²= 4x and x²= 4y             tan⁻¹3/4 

k) y²= 4ax and x² =4by at their point of intersection other than the origin.  tan⁻¹[3³√(ab)/{2(³√a²+ ³√b²}]


19) Show that curves intersect orthogonally:

a) y=x³ and 6y=7-x².              

b) x²+4y²=8 and x²-2y²=4

c) x³-3xy²= -2 and 3x²y- y³=2.  

d) y= x² and x³+6x= 7 at (1,1)

e) show that the condition that the curves ax²+by²= 1 and a'x² + b'y²=1 should intersect orthogonally is that 1/a - 1/b = 1/A' - 1/b'  


20) Show that the curves intersect orthogonally at the indicated points:

a) x²=4y and 4y+x²=8 at (2,1)

b) y²=8x and 2x²+y²=10 at (1,2√2)

c) x²=y and x³ +6y=7 at (1,1)


21) Find the condition that the curves intersect orthogonally:

a)x²/a² + y²/b² =1 & xy=c².      b²= a²

b) x²/a² + y²/b² =1& x²/A²-y²/B² =1.          a²- b² = A²+ B².


22) 

A) Show that the curves 4x=y² and 4xy=k cut at right angles if k²=512

B) Show that the curves 2x=y² and 2xy=k cut at right angles, if k²=8.

C) Show that the curves x²-3x+1=y and x(y+3)=4 cut at right angles, at the point (2,-1).

D) Show that the curves x=y² and xy=k cut at right angles, if 8k²=1

E) Show that the curves xy= a² and x² + y²= 2a² touch each other.


23) If the line x cost + y sint = p touches the parabola y² = 4ax, Prove that p= - a sint tant.








































VERY SHORT ANSWER QUESTIONS

               EXERCISE-- 2

            ________________


1) Find the point on the curve y= x² -2x +3, where the tangent is parallel to x-axis.                            . .(1,2


2) find the slope of the tangent to the curve x= t² +3t-8, y= 2t² -2t-5 at t= 2.                6/7

3) If the tangent line at a point (x,y) on the curve y= f(x) is parallel to x-axis, then write the value of dy/dx.        0

4) write the value of dy/dx, if the normal to the curve y= f(x) at (x,y) is parallel to x-axis.            0

5)  if the tangent to a curve at a point (x, y) is equally inclined to the co-ordinate Axes, then write the value of dy/dx.            ±1

6) If the tangent line at a point (x,y) on the curve y= f(x) is parallel to y axis, find the value of dx/dy.     0

7) find the slope of the normal at the point 't' on the curve x= 1/t, y= t.       1/t²

8) Write the coordinates of the point on the curve y²= x where the tangent line makes an angle π/4 with x-axis.             (1/4,1/2)


9) Write the angle made by the tangent to the curve x= eᵗ cost, y= eᵗ sint at t=π/4 with the x-axis.    π/2

10) Write the equation of the normal to the curve y= x+ sinx cosx at π/2.                    2x=π 

11) Find the coordinates of the point on the curve y²= 3 - 4x where tangent is parallel to the line 2x+ y-2= 0.                    (1/2,1) 

12) write the equation of the tangent to the curve y= x² - x+2 at the point where it crosses the y-axis.              x+y-2= 0

13) Write the angle between the curves y²= 4x and x²= 2y-3 at the point (1,2).                       0

14) Write the angle between the curve y= e⁻ˣ and y= eˣ at their point of intersection.                    90°

15) write the slope of the normal to the curve y= 1/x at the point (3,1/3).               9

16) write the coordinates of the point at which the tangent to the curve y= 2x² - x+1 is parallel to the line y= 3x+9.                      (1,2)

17) Write the equation of the normal to the curve y= cosx at (0,1).              x= 0





MULTIPLE CHOICE QUESTIONS 


1) The equation to the normal to the curve y= sinx at (0,0) is

A) x= 0 B) y= 0 C) x+y= 0 D) x-y= 0

2) The equation of the normal to the curve y= x+ sinx cosx at x=π/2 is 

A) x= 2 B) x= π C) x+π= 0 D) 2x= π

3) the equation of the normal to the curve y= x(2-x) at the point (2,0) is

A) x -2y= 2 B) x -2y+2= 0  

C) 2x+y= 4 D) 2x + y-4= 0

4) the point on the curve y²= x where tangent makes 45° angle with x-axis is

A)(1/2,1/4)         B) (1/4,1/2)

C) (4,2)                D) (1,1)


5) If the tangent to the curve x= at², y= 2at is perpendicular to x-axis, then its point of contact is

A) (a,a) B)(0,a) C)(0,0) D)(a,0)


6) the point on the curve y= x² - 3x+2 where tangent is perpendicular to y= x is

A)(0,2) B)(1,0) C) (-1,6) D)(2,-2)


7) the point on the curve y²= x where tangent makes 45° angle with x axis is 

A) (1/2,1/4)          B)(1/4,1/2) 

C) (4,2)                  D) (1,1)


8) the point at the curve y= 12x - x² where the slope of the tangent is zero will be

A) (0,0) B)(2,16) C) (3,9) D) none


9) The angle between the curves y²= x and x²= y at (1,1) is

A) tan⁻ 4/3 B)tan⁻ 3/4 C) 90° D)45°  


10) The equation of the normal to the curve 3x²- y²= 8 which is parallel to x+3y= 8 is

A) x+3y= 8 B) x+3y= -8  

C) x+3y±8= 0 D) x+3y= 0


11) The equation of the tangent at those points where the curve y= x² - 3x+2 meets x-axis are

A) x - y= -2=x - y -1

B) x + y -2=0=x - y -2

C) x - y -1= 0=x - y 

D) x - y= 0=x +y 


12) the slope of the tangent to the curve x² = t²+ 3t -8, y= 2t² - 2t -5 at point (2,1) is

A) 22/7 B) 6/7 C) -6 D) none


13) At what point the slope of the tangent to the curve x²+ y²- 2x-3= 0 is zero

A)(3,0),(-1,0). B) (3,0),(1,2)

C) (-1,0),(1,2) D) (1,2),(1,-2)


14) The angle of interseption of the curve xy= a² and x² - y² = 2a² is

A) 0° B) 45° C) 90° D) none


15) If the curve ay+ x²= 7 and x³= y cut orthogonally at (1,1), then a equal to

A) 1 B) -6 C) 6 D) 0


16) If the line y= x touches the curve y= x² + bx+ c at a point (1,1) then

A) b=1, c=2 B) b=-1, c=1

C) b=2, c=1 D) b=-2, c=1  


17) The slope of the tangent to the curve x= 3t²+1, y= t³ -1 at x=1 is

A) 1/2 B) 0 C) -2 D) Undefined


18) The curves y= a eˣ And y= be⁻ˣ cut orthogonally, if

A) b= a B) -b=a C) ab=1 D) ab=2


19) The Equation of the normal to the curve x= a cos³€, y= a sin³€ at the point €=π/4 is

A) x= 0 B) y= 0 C) x= y D) x+y=a 


20) If the curve y= 2eˣ and y=ae⁻ˣ intersect orthogonally, then a=

A) 1/2 B) -1/2 C) 2 D) 2e²


21) The point on the curve y= 6x - x² at which the tangent to the curve is inclined at π/5 to the line x+y= 0 is

A) (-3,-27) B)(3,9) C)(7/2,35/4) D) (0,0) 


22) The angle of intersection angle of the parabolas y²=4ax and x²= 4ay at the origin is

A) π/2 B) π/3 C) π/2 D)π/4 


23) The angle of intersection of the curves y= 2 sin²x and y= cos2x at x=π/6 is

A) π/4 B) π/2 C) π/3 D) none


24) any tangent to the curve y= 2x⁶+ 3x+5

A) is parallel to x axis

B) is parallel to y axis 

C) makes an acute angle with x-axis

D) makes an obtuse angle with x-axis


25) the point in the curve 9y²= x³, where the normal to the curve makes equal intercepts with the axes is

A)(4,8/3) B) (-4,8/3) C)(4, -8/3) D) n

No comments:

Post a Comment