Friday, 28 June 2019

PRACTICE PAPER For (JOINT ENTRANCE EXAMINATION)

      PRACTICE PAPER  For IIT
( COMPETITIVE EXAMINATION)

1) Three dice are thrown simultaneously. The probability of getting a sum of 15, is

a) 1/72  b) 5/36  c) 5/72  d) none

2) Two dice are thrown simultaneously to get the coordinates of a point on x - y plane. Then the probability that this point lies inside or on the region bounded by | x |+|  y | =3, is

a) 3/14   b) 2/3   c) 1/12    d) 4/14.

3) Let (x) denotes the probability of the occurence of event x. Then all those points (x, y) = P(A), P(B), in a plane which satisfy the cinditiins, P(A) ≥ 3/4 and 1/8 ≤ P(A∩B) ≤ 3/8 imply.

a) P(A)+P(B) < 11/8 
b) P(A)+P(B)>11/8
c) 7/8 ≤ P(A)+ P(B) < 11/8
d) none of these.

4) Two points are taken at random on the given straight line segment of length a. Then the probability for the distance between them to exceed a given length c,
where  0 < c < a, is

a) (1+c/a)².               b) (1 - c/a)².
c)(1+a/c)².                d)  None

5) If a ∈  [20,0], then the probability that the Equation
16x² +8(a+5)x - 7a - 5 =0 has imaginary roots, is

a)13/20.                  b) 20/13.
c) 13/24.                 d) 15/20.

6) If the sides of a triangle are decided by the row of a single die thrice, the probability that triangle is of maximum area given that its an isosceles triangle, is

a) 1/7. b) 1/27. c) 1/14. d) none.

7) Four cards are drawn from a pack of 52 playing cards. Then the probability of drawing at least one pair is

a) 1 - {(4⁴ x ¹³C₄)}/⁵²C₄
b) 1 -  ¹³C₄/⁵²C₄
c) 1 -  {(4⁴x 13!)}/52!
d) none

8) If P(A/B)=P(B/A). A and B are two non- mutually exclusive events, then

a) A and B are necessarily same events.
b) P(A) = P(B)
c) P(A∩B) = P(A) P(B)
d) All if the above.

9) The probability that
sin⁻¹(sin x) + cos⁻¹ (cosy) is an Integer x, y ∈ {1,2,3,4}, is

a) 1/16   b) 3/16  c) 15/16  d) none

10)  A and B throw a dice each. The probability that A's throw is not greater than B's throw, is

a) 7/12  b)  5/12   c) 1/12    d)1/2

11) If A and B are square metrices of order ' n' such that
A² - B²=(A - B)(A+B), then which of the following will be true ?

a) Either of A or B is zero metrix.
b) A=B.    c) AB=BA    d) Either of A or B is an identity metrix.

12)If Metrix A= x  2. And | A³ |=125
                            2  x.  Then x= ?

a) ±1    b) ±2       c) ±3.     d) ±5

13) If Determinants A= x    1   1
        B =  x   1                  1   x    1
                1   x                  1   1    x
Then d A/d x =

a) 3B+1.    b) 3B.   c) - 3B.  d) 1-3B

14) If the Determinant of the adjoint of a (real) matrix of order 3 is 25, then the Determinant of the inverse of the metrix is -

a) 0.2.   b) ±5.  c) 1/⁵√625. d) ±0.2

15) A tangent is drawn to the circle to the circle 2x²+2y²-3x+4y=0 at the point 'A' and it meets the line x+y=3 at B(2,1), then AB = ?

a)√10.     b) 2.       c)2√2.        d) 0

16) The sum of the squares of the eccentricities of the conics
x²/2+ y²/3=1 and x²/4 - y²/3=1 is

a) 2.     b) √(7/8)    c) √7.    d) √3

17) If x+y=tan⁻¹ and
d²y/dx² = f(y)dy/dx, then f(y) = ?

a) -2/y³   b) 2/y³  c) 1/y     d) -1/y

18) The coefficient of x⁴ in the expansion of (1+x+x²+x³)ⁿ is

a) ⁿC₄                  b) ⁿC₄ + ⁿC₂
c) ⁿC₄ + ⁿC₂+ⁿC₄ . ⁿC₂
d) ⁿC₄ + ⁿC₂+ⁿC₁. ⁿC₂

19) Range of the function
f(x)=(x²+x+2)/(x²+x+1) , x ∈ R is -

a) (1,∞)                    b) (1,11/7)
c) (1,7/3)                  d) (1,7/5)

20) If α, β are the roots of 8x²-3x+27=0, then the value of
{(α²/β)¹/³   + (β²/α)¹/³} is

a) 1/3  b) 1/4   c) 1/5   d) 1/6

21) Let A={a,b,c}. which of the following is not an equivalence relation in A .

a) R₁ ={(a,b),(b,c),(a,c),(a,a)}
b) R₂= {(c,b),(c,a),(c,c),(b,b)}
c) R₃= {(a,a),(b,b),(c,c),(a,b)}
d) None of these.

22) If   ∫ x dx/(x²-4x+8) =
  k(x²-4x+8) + tan⁻¹{(x-2)/2} +c,
  find k.

a) 1/2   b) 1   c) 2    d) 3.

23) Given two events A and B. if odds against A are as 2/1 and those in favour of A∪B are as 3/1, then .

a) 1/2< P(B)≤3/4
b) 5/12≤P(B)≤3/4
c) 1/4≤P(B)≤3/5         d) None.

24) If sinα,sin²α,sin⁴α,sin⁵α,
       (-π<α <π) are in A.P.,
       then α lies in the interval.

a) (-π/2, π/2)            b) (-π/3,π/3)
c) (-π/6, π/6)            d) None .

25) The point on the curve y=(x-3)², where the tangent is parallel to the chord joining (3,0) and (4,1) is-

a) cosx   b) tan x   c) x²    d) | x- 1|

26) cos[2cos⁻¹1/5 + sin⁻¹ 1/5] =

a) 1/5   b)-2√6/5  c) -1/5  d)√6/5.

27) ∫ cosⁿ⁻¹x/sinⁿ⁺¹x  dx, n≠ 0

a) cotⁿx/n + C   b) -cotⁿ⁻¹x/(n-1)+C
c) -cotⁿx/ n  + C  d) cotⁿ⁻¹x/(n-1) +C

28) The maximum area of a rectangle that can be inscribed in a circle of radius 2 units is-

a) 8π sq.units.     b) 4 sq.units
c) 5 sq.units.       d) 8 sq units.

29) The 100th term of the sequence 1,2,2,3,3,3,4,4,4,4....is

a) 12.  b) 13.  c) 14   d) 15.   e) 16.

30) Five Numbers are in H.P The middle term is 1 and the ratio of the second and the fourth terms is 2:1. Then the sum of the first three terms is-

a) 11/2  b) 5. c) 2.   d) 14/3

31) Find x
      sin[2cos⁻¹{cot(2tan⁻¹x)}] =0

a) 1   b) -1   c) 1± √(2)  d) -(1±√2)

32) Cos4x + (10tanx)/(1+tan²x) =3
       in the interval (-π/2 , π/2) has

a) no solution       b) one solution
c) two solution    d) three solution

33) The largest interval for which 
        x²² - x¹⁹ + x¹⁴ - x⁵ + 1 > 1 is
a) (0,1)                              b) (-∞,1]  c)[1,∞)                            d) (-∞,∞)

34) 100 students appeared for a test comprising 5 subjects: Hindi, English, Mathematics, Physics and Chemistry. The number of them passed in these subjects are 99,85,91,89,87 respectively. The number of students who passed in all the 5 subjects can be
a) 45.   b) 56.    c) 67.     d) 78



Continue.........

For solution
or for ANSWER
call/message.

9339877042
8337077042

No comments:

Post a Comment