Monday, 30 September 2019

Differential Equations of First Order and First Degree

       Equation Of First Order 
                        And
                 First Degree

     -------------------------------------------------

        Separation of variables
                   ***********

If in an equation, it is possible to get all the functions of x and dx in to one side and all the function of y and dy to the other, the variable are said to be separable.

Working rule to solve an equation in which variables are separable.

step 1 )
Let dy/dx =f₁(x) f₂(y)    ..(1)
be given equation f₁(x) is a function of x alone and f₂(y) is a function of y alone.

step 2)
From (1) separating variables, 
[1/f₂(y)] dy = f₁(x) dx ............(2)

step 3)
Integrating both sides of (2), we have ∫[1/f₂(y)] dy=∫f₁(x)dx + c...(3)
where c is constant of integration, is the required solution.

Note 1:
In all solution (3), an arbitrary constant c must be added in any one side only. If c is not added, then the solution obtained will not be a general solution of (1).

Note 2: To simplify the solution (3), the constant of integration can be chosen in any suitable form so as to get the final solution in a form as simple as possible. Accordingly, we are write log c, tan⁻¹ c, sin c, eᶜ, 
(1/2). C , (-1/3). C etc in place of c in some solutions.

Note 3 :
The students are advised to remember by heart the following formulas. These will help them to write solution (3) in compact form

i) log x+ log y= log xy

ii) log x - log y = log(x/y)

iii) n log x = log xⁿ

iv)tan⁻¹x+tan⁻¹y= tan⁻¹[(x+y)/(1-xy)]

v) tan⁻¹x-tan⁻¹y = tan⁻¹[(x-y)/(1+xy)]

vi) eˡᵒᵍ ᶠ⁽ˣ⁾ = f(x).

                     EXAMPLE
                     ---------------

1) dy/dx = eˣ⁻ʸ + x² e⁻ʸ

dy/dx =  e⁻ʸ( eˣ +x²) 

or  eʸ dy = (x² +eˣ) dx

integrating  eʸ = x³/3 + eˣ + c, c is con.

2) √(1+x²+y²+x²y²) + xy (dy/dx) = 0

=√{(1+x²)(1+y²)} + xy(dy/dx) = 0

= √(1+x²)dx /x  + ydy/√(1+y²) =0

=(1+x²)dx/x√(1+x²)+ydy/√(1+y²)
                                                  =0

= ∫ dx/x√(1+x²) +∫xdx/√(1+x²)+
                                    ydy/(1+y²) =c

= log x - log{1- √(1+x²)}+ 
                        √(1+x²)+√(1+y²)  =c

            

               EXERCISE 
                 *********

1) dy/dx  =   eˣ⁺ʸ + x² eʸ 

2) (dy/dx)tan y=sin(x + y) + sin(x-y)

3) dy/dx=(sinx+xcosx)/
                               {y(2log y+1)}

4) dy/dx={x(2log x+1)}/
                               (siny +ycosy)

5) log(dy/dx) = ax + by

6) y - x(dy/dx) = a(y² + dy/dx)

7) 3eˣ tan y dx + (1- eˣ)sec² y dy =0

8)  ₑx+y  dy ₌ ₓ² ₑx³+y  dx

9) dy/dx = eˣ ⁺ ʸ when x=1, y=1. find y when x= -1

10) (eˣ + 1)y0 dy = (y +1)eˣ dx

11) (dy/dx) - y tan x = - y sec² x

12) x√(1+y²) dx + y√(1+x²) dy =0

13) (2ax+x²)(dy/dx) = a² + 2ax

14) dr = a (r sinθ dθ - cosθ dr)

15) (eʸ +1) cosx dx + eʸsin x dy = 0

16) √(a+x) (dy/dx) +x = 0

17) dy/dx = √{(1-y²)/(1 -x²)}

18) (x²-yx²)dy + (y²+xy²) dx =0

19) (xy² +x)dx + (yx² +y) dy = 0

20) sec²x tany dx+sec²y tan xdy =0

21) (1+x)y dx + (1+y)x dx = 0

22) (1- x²)(1 - y) dx = xy(1+y)dx

23) x²(y+1)dx + y²(x - 1) dy =0

24) (dy/dx)tan y=sin(x+y)+sin(x - y)

25) y - x dy/dx = 3(1+ x² dy/dx)

26) cosy log(secx +tanx) dx =
       cos xlog(sec y + tan y) dy

27) x dy - y dx = (a² + y²)¹/² dx

  
     MISCELLANEOUS PROBLEM

1) Find the curves passing through (0,1) and satisfying sin(dy/dx)

2) Find the function f which satisfies the equation df/dx = 2f, given that f(0) = e³

--------------------------------------------------------

       VARIABLE UNSEPARABLE
       ------------------- *** -------------------
Transformation of some equations in the form in which variables are separable Equations of the form
dy/dx = f(ax+ by+ c).      OR
dy/dx = f(ax + by)
can be reduced to an Equation in which variables can be separated.
For this purpose, we use the substitution  ax +by+c  = v OR
                       ax + by=v

EXAMPLE (1)

dy/dx = (4x + y +1)²
Let 4x + y +1 = v.              ........(1)
Differentiating (1) with respect to x, we get 4 + (dy/dx)= dv/dx
   OR
dy/dx=(dv/dx) - 4            ........(2)
Using (1) and (2),
the equation becomes
(dv/dx) - 4 = v² OR 
dv/dx = 4 + v²
Now , separating variables x and v,
So dx =dv/(4+v²)
Integrating,
x + c ' = (1/2).Tan⁻¹(v/2),
where c ' is an arbitrary constant.
Or, 2x + c =  Tan⁻¹(v/2)
Or, v= 2 tan(2x +c), Where c = 2c '
Or, 4x + y + 1=2 tan(2x +c),
using (1)

EXAMPLE (2)
(x+y)² (dy/dx) = a².
Let x+y=v                            .......(1)
Differentiating 1+(dy/dx)   OR
       dy/dx= dv/dx - 1         .......(2)
Using (1) and (2) the given Equation becomes
v²(dv/dx -1)= a²     OR
v²= dv/dx = a²+v²  OR
dx=v²/(v²+a²)         OR
dx = [1- a²/(a²+v²)]
Integrating,
x+c = v - a²  (1/a) Tan⁻¹(v/a),
where c is arbitrary constant.
Or x +c= x+y - Tan⁻¹{(x+y)/2}
Or y - a Tan⁻¹{(x+y)/a}= c

EXERCISE
***********

1) dy/dx=sec(x+y)
         or
cos(x+y)dy=dx

2) dy/dx= sin(x+y) + cos(x +y)

3) (x+y)(dx - dy) = dx+ dy

4) dy/dx = (4x +6y +5)/(3y +2x +4)

5) (x+2y -1)dx = (x + 2y +1) dy

6) dy/dx= (x +y)²

7) dy/dx +1 = eˣ⁺ʸ

8) (2x +y +1) dx + (4x +2y -1) dy= 0

9) (x - y - 2)dx - (2x - 2y -3) dy =0

10) (x +y +1) (dy/dx) = 1

11) sin⁻¹(dy/dx) = x +y

12) (2x + 4y +3)(dy/dx) = 2y +x + 1

13) (4x+6y+5)/(3y+2x+4)(dy/dx)=1

14) dy/dx= (x-y+3)/(2x - 2y +5)

15) (2x +2y +3)dy - (x+y+1) dx =0

16) (x -y)² (dy/dx) = a²

17) (x+y-a)/(x+y-b)(dy/dx) =
        (x+y+a)/(x+y+b)

18) dy/dx = cos (x+y)

19) dy/dx= eˣ⁺ʸ given x=1, y=1,  
       prove y(-1)= -1

20) dy/dx= (x+y+1)/(x+y-1)
       when y= 1/3, at x= 2/3

21) (x+y-1)dy = (x+y) dx

22) dy/dx = (x-y+3)/(2x-2y+5)

--------------------------------------------------------

     HOMOGENEOUS EQUATION 
        ------------------ (  ) ------------------

Definition)
A differential equation of first order and first degree is said to be homogeneous if it can be put in the form         dy/dx = f(y/x)

Working Rule)
Let the given equation be homogeneous. then , by definitiin, the given equation can be put in the form      dy/dx =f(y/x) .......(1)

To solve(1),let y/x= v  i.e., y=vx ..(2)
Differentiating w.r.t.x, (2)
dy/dx= v+x(dv/dx  ...(3)
Using (2) and (3), (1) becomes
v+ x dv/dx = f(v) or x dv/dx=f(v) -v
separating the variables x and v, we have  dx/x =ln(dv/{f(v) -v}
so that 
log x + c = dv/{f(v) -v} where c is an arbitrary constant. after integratiin, replace v by y/x.

Examples
**********

1) (x³+3xy²)dx+(y³+3x²y)dy =0

given dy/dx = -(x³+3xy²)/(y³+3x²y)

 dy/dx ={1+3(y/x)²}/{(y/x)³+3(y/x)} 
  take y/x =v, i.e., y=vx
  so that dy/dx = v+ x (dv/dx) 
  so v+ x dv/dx = -(1+3v²)/(v³+3v)
  or x dv/dx = -(1+3v²)/(v³ +3v)  - v
                  = -(v⁴ +6v² +1)/(v³ +3v)
or 4dx/x=-(4v³ +12v)/
                               (v⁴ + 6v² +1)dv

integrating 4 log x= - log(v⁴+6v²+1) + log c, c being arbitrary constant.
or log x⁴ = log[c/(v⁴+6v² +1)], i.e.,   
  x⁴(v⁴+6v²+1)=c
  or y⁴ +6x²y²+x⁴ +c
  or (x²+y²)² +4x²y² =c  as y/x =v

                   EXERCISE
                   ----------------

1) (x² +y²)dx - 2xydy =0

2) y² +x² (dy/dx) = xy(dy/dx)

3) (x² +xy)dy = (x²+ y²) dx

4) dy/dx = y/x  + sin(y/x)

5) (x² +y²) (dy/dx) = xy

6) (x² -y²) dy = 2xy dx

7) (x³ - y³)dx + xy² dy =0

8) y² dx + (xy +x²) dy =0

9) x(dy/dx) + (y²/x)= y

10) x²y dx - (x³+ y³) dy = 0

11) (x +y) dy + (x - y ) dx = 0
                       or
       y - x((dy/dx) = x + y(dy/dx) 

12) x(x - y)dy + y² dx =0

13) x(x - y) dy = y(x + y)dx

14) xsin (y/x) (dy/dx)= ysin (y/x) - x

15) x² dy + y(x+ y)dx =0

16) (x³ - 3xy²)dx = (y³ - 3x²y) dy

17) 2 (dy/dx) = [y(x + y)/x²] 
                        or
      2(dy/dx) - (y/x) = y²/x²

18) (x³ - 2y³) dx + 3xy² dy =0

19) dy/dx = (xy² - x²y)/x³

20) (x² + y²) dx +2xy dy = 0

--------------------------------------------------------

   EQUATION REDUCIBLE TO 
     HOMOGENEOUS FORM.
        --------------(  )------------------

Equ.   dy/dx=(ax+by+c)/(a′x+by +c)

              where a/a′ ≠ b/b′    .........(1)

can be reduced to homogenous as

Take x= X + h  and y =Y+k ...(2)

where X and Y are new variables and h and k are constants to be chosen that the resulting Equation in terms of X and Y may become homogeneous.

From (2), dx=d X and dy= dY 

so that dy/DX = dY/dX.        ...(3)

Using (2) and (3), (1) becomes

dY/dX= {a(X+h)+b(Y+k)+c}
                          {a′(X +h)b′(Y+k)+c′}

  = {aX +bY +(ah+bk+c)}
          {a′X +b′Y +(a′h+b'k+c)}  .....(4)

In order to make (4) homogeneous, chose h and k so as to satisfy the following two Equation ah + bk+c=0 and a'h +b'k+c' =0.  ........(5)
Solving (5), h= (bc' -b'c)/(ab' - a'b) and k= (ca' - c'a)/(ab' - a'b) .......(6)

Given that a/a' ≠ b/b'. Therefore, 

(ab' - a'b) ≠ 0. Hence, h and k given by (6) are meaningful, i.e., h and k will exist. Now, h and k are shown. So from (2), we get

X= x - h.  And Y= y - k.       .....(7)

In view of (5), (4) reduces to

dY/dX = (aX +bY)/(a'X +  b'Y)
             = {a+b(Y/X)}/{a'+b'(Y/X)

Which is surely homogeneous Equation in X and Y and can be solved by putting Y/X =v as usual. After getting solution in terms of X and Y, we remove X and Y by using (7) and obtain solution in terms of the original variables x and y.

EXAMPLE
**********

dY/dx = (x+2y -3)/(2x +y -3)

Let x= X+h, and y=Y+k

So dy/dx= dY/dX. ................(1)

So Equation becomes

dY/dX={X+2Y+(h+2k-3)}/

           {2X +Y+(2h+k - 3)} ........(2)

Choose h,k so that

h+2k-3=0, and 2h+k - 3=0 ......(3)

Solving (3) we get h=1, k=1 so in(1) we have X=x - 1, and Y = y - 1.....(4)

Using (3) in (2), we get

dY/dX= (X+2Y)/(2X+Y)

          = {1+(2Y/X)}/{2+(Y/X)} ...(5)

Take Y/X=v, i.e., Y=vx

                   dY/dX= v+X(d v/dX)...(6)

From (5) and (6), we have

v+X d v/dX=(1+2v)/(2+v)

Or X dv/dX = (1+2v)/(2+v)  - v

                    = (1- v²)/(2+v)

Or dX/X ={(2+v)dv}/{(1 -v)(1+v)}

=[1/2 {1/(1+v)}  +3/2{1/(1-v)}] dv,

Integrating

 logX+logc=(1/2)[log(1+v)- 3log(1-v)]

Or 2 log (cX)= log(1+v)/(1-v)³

Or X²c² = (1+v)/(1 - v)³

Or X²c²(1-Y/X)³=1+ Y/X, as v= Y/X

Or c²(X-Y)³= X+Y

or c²{x-1-(y-1)}²= x-1+y-1,.   ...by (4)

Or c'(x-y)²= x+y-2, taking c'= c².c' being an arbitrary constant.

                   EXERCISE

                 *************

1) dy/dx + (x-y-2)/(x-2y-3)=0

2) dy/dx= (x+y+4)/(x-y-6)

3) dy/dx= (x-2y+5)/(2x+y-1)

4) dy/dx= (x+y-2)/(y-x-4)

5) (2x²+3y²-7)x dx-(3x²+2y²-8)y dy=0

6) dy/dx= (x+2y+3)/(2x+3y+4)

7) dy/dx= (y-x-1)/(y+x+5)

8) dy/dx=(2x +2y -2)/(3x+y-5)

9) dy/dx= (2x-y+1)/(x+2y-3)

10) (x+2y-2)dx +(2x-y+3) dy=0

11) (2x+3y-5)(dy/dx +(3x+2y-5) =0

12) (x -y)dy = (x+y+1)dx

13)(6x+2y-10)(dy/dx)-2x-9y +20 =0

14) (6x -2y -7) dx = (2x +3y -6) dy

15) (3y -7x +7)dx+ (7y -3x +3) dy=0

16) (x-y-1)dx + (4y+x-1)dy =0

17) (2x +3y +4) dy = (x+2y +3) dx.

  

Saturday, 28 September 2019

DEFINITE INTEGRATION (BY PROPERTY)

1) ˡᵒᵍ²₀∫eˣ/(1+ eˣ)  dx

2)  ¹₀∫ dx/{(1+x)(2+x) 

3) ∫ cost dt/{(3+sint)(4+sint)}
          at (π/2,0) 

4) ¹₀∫ x³√(1+3x⁴) dx

5)  ¹₀∫ ₓₑx² dx

6)  (2+3sin x)/cos²x  dx at (π/3,0)

7) ∫ √(1 +sin x) dx at (π,0)

8)  ∫ sin² x cos x dx at (π/2,0)

9)  ¹₀∫ x tan⁻¹x dx

10)  ∫ dx/{x(1+log x)²} at (e²,1)

11)  ³₂∫ x⁵ dx/(x⁴ -1)

12) ¹₀∫ xlog(1+2x) dx

13)  ³₀∫ xdx/{√(x+1) + √(5x +1)}

14)  ¹⁵₈∫ dx/{(x-3)√(x+1)}

15)  ³₀∫{√(x+1) -1}/{√(x+1) +1}

16)  ¹₀∫ √{(1-x²)/(1+x²)}  dx

17)  ∫ xsin⁻¹x/√(1-x²)   dx at(1/2,0)

18)  ∫ x²/√(1-x²) dx  at(1√2 , 0)

19)  ᵃ₀∫ dx/(a² + x²)³/²

20) dx/(a²sin²x + b² cos² x)
       at(π/2,0)

21)  ¹⁶₀∫x¹/⁴/(1+x¹/⁴)  dx 

22)  ˡᵒᵍ ²₀∫ eˣ dx/(e²ˣ +3eˣ +2)

23)  ²₀∫ x²dx/{(x+1)(x+2)²} 

24)  ∫ dx/(2+3 cosx) dx at (π/2,0)

25) ∫ sinxdx/(cos²x+3cosx+2)
          at(π/2,0)

 26) ³₂ ∫ √{(x-2)(3-x)}  dx

27) ∫sin⁴ x dx at (π/2,0)

28) ∫ √(1+cosx) dx at (π/2,0)

29)  ∫ √(1 - cos 2x) dx at (π/2,0)

30)  ∫ (sin x + cos x) dx at (π/2,0)

31)  ∫ √(1+sin 2x) dx at (π/4,0)

32)  ∫ cos x cos2x dx at (π/6,0)

33)  ∫ sin3x sin 2x dx at (π/4,0)

34)  ∫ dx/(1+cosx) at (π/2, π/4)

35)  ∫ √(2 - x²) dx at (√2 , 0)

36) ¹₀ ∫ dx/√(4 - x²)

37)  ²₋₁ ∫ x dx/(x² +1)²

38)  ³₋₁ ∫ √(3x +7) dx

39)  ²₁ ∫ √(3t - 2) dt

40) ¹₀ ∫ x³√(1+3x⁴) dx

41)  ∫ dx/(xlog x) at (e²,e)

42)  ∫ eˣ/(1 + eˣ) dx at ( log2, 0)

43)π/²₀∫cosx dx/{(sinx +1)(sinx +2)

44)  ∫ √(cos x) sin³x dx at (π/2,2)

45)  ∫ cos x/(1+ sin²x) dx at (π/2,0)

46)  ¹₀∫ √(tan⁻¹x)/(1+x²) dx

47)  ∫ xlogx at ( √e , 1)

48)   ¹₀∫ sin⁻¹x dx

49)  ¹₀ ∫ sin⁻¹{2x/(1+x²)} dx

50) ∫ sin 2x tan⁻¹(sin x) dx at(π/2,0)

51) ¹₀ ∫ (cos⁻¹x)² dx

52) ⁵₁ ∫(x² - x)/√(2x +1)  dx

53)  ∫ {1/logx  - 1/(log x)²} at (e², e)

54) ¹₀ ∫ x²/(3x +2)² dx

55) Prove)

1) ²₁ ∫ dx/√(x² + x -2) dx = logₑ3

2) π/⁴₀ ∫sin2x/(sin⁴x+cos⁴x)dx= π/4

3)  ²³₇∫ dx/{(x-2)√(x+2)}dx=
                                   (1/2)log(15/7)

4) ∫ dx/(1 +sinx) at (π,0) = 2

5) ∫ dx/(3+2cosx) at (π/2,0) =
                     (2√5)tan⁻¹(1/√5)

6) π/²₀∫ dx/(2cosx+ 4sinx) =
            (1√5) log{(3+√5)/3}

SOLVE WITH DEFINITE PROPERTY

1) π₀ ∫ x sim³x dx

2) π₀ ∫ x sin x dx/(1+ cos²x)

3) ¹₀ ∫ log(1/x - 1) dx

4)  ∫ sin 2x log tan x dx at (π/2,0)

5) ∫ sin xdx/(sinx + cosx) at (π/2,0) 

6) π₀ ∫ x/(1+sinx) dx

7)π/²₀∫√(secx)/
                   {√(secx)+√(cosecx)}

8) π₀∫ x cos² x dx

9)  ∫ log(cot x)dx at (π/2,0)

10) ∫ dx/(1+ tan²x) dx at (π/2,0)

11) π₀ ∫ x dx /(a² cos²x + b²sin²x)

12) ¹₀ ∫ log(1+ x)/(1+ x²)

PROVE::::

1) π/²₀ ∫ log(tan x) dx=0

2) π/²₀∫ √(sinx)/{√(sinx)+√(cosx)} 
                                               =π/4

3) π/²₀ ∫ (2log sinx - log sin 2x) dx
                                 = (π/2) log(1/2)

4) π/²₀ ∫ sinⁿx/(sinⁿx + cosⁿ x)= π/2

5) π/²₀ ∫ dx/(1+tan³x) dx= π/2

6)  π/²₀ ∫(sinx -cosx)/
                             (1+sinxcosx)= 0

7) π/²₀ x/(sinx + cos x) 
                          = (π√(2)/log(√2 +1)

8) π/²₀ ∫sin²x/(sinx+ cosx) 
                         = (1/√2) log(√2  +1)

9)  ²₀ ∫ √(x)/(√(x) +√(2 - x) dx= 1

10) π₀∫ x sin x cos⁴x dx = π/5

11) π₀∫ x tanx dx/(sec x + tan x)   
                                   = (π/2)(π - 2)

12) ¹₀∫ cot⁻¹(1 - x +x²)dx
                                  =(π//2)- log2 

13) π/²₀ ∫ log(sinx) dx
                                = (π/2) log1/2

14)π/⁴₀∫ log(1+ tanx)dx =(π/8)log 2

15) π/²₀ ∫ log(cos x) dx= (π/2)log 2

16) π/²₀∫sin²xdx/(1+sinx cos x)
                                             =π/(3√3)

17) π₀ ∫ (a²cos²x+ b² sin²x) dx 
                                   =π/4 (a² +b²)

18) π₀∫ xdx/(a²cos²x + b² sin²x)² 
                              = π(a² +b²)/4a³b³

19) π/²₀ ∫ x dx/(sec x+ cosecx) 
                       = π/4{1+ log(√2 +1)}

20) π₀ ∫x tan xdx/(secx + cos x)
                                            = (π²/4)

21) π₀ ∫ x cos⁴x dx = 3π²/16

22) π₀ ∫x sin x cos⁴ x dx = π/5

23) π₀ ∫ x sin²x cos⁴x dx= π²/32

24) π₀ ∫ x sin⁶x cos⁴x dx = 3π²/512

25) π₀ ∫ cos⁵ x dx = 0

26) π₀ ∫ sin³x cos⁷x dx= 0

27) ᵃ₀ ∫ √(a² - x²) dx πa²/4, a> 0

28) ᵃ₀ ∫ dx/{x +√(a² - x²)} = π/4

29) ⁺ᵃ₋ₐ ∫ ₓₑ2/(1+x²) dx = 0

30)⁺¹/²₋₁/₂∫ cosx log{(1+x)/(1-x)}=0

31) ∫ sin⁷x dx at ( π/2, -π/2) =0

32) ∫x³ sin⁴x dx at(π/4, -π/4)= 0

33) ∫sin²xdx at(π/4,- π/4)=π/4 -1/2

34) If f(x) = f(2a -x), then prove that   ²ᵃ₀∫ f(x) dx = 2∫ᵃ₀  f(x) dx 





Thursday, 26 September 2019

APPROXIMATION

APPROXIMATION VALUE 

 by DIFFERENTIATION

1)
Using the method of differential, find the approximation value of

a) √25.02                  b) ³√0.009

c) ⁴√627                   

e) sin 61º, given that 1º = 0.01745

f) cos 11π/24, given π=3.14159

g) log₁₀40.05,given log₄=0.6021 and log₁₀e = 0.4343

h) logₑ(25.02) given logₑ=3.2189

i) tan 44º given 1º =0.01745

2) The radius of a balloon is 7cm. If an error of 0.01cm. is made in measuring the radius. find the error in measuring the volume of the balloon.

3) A closed circular cylinder has height 16cm. and radius r cm. The tital surface areas is A cm². Prove that dA/dr = 4π(r+8). 
Hence calculate an approximate increase in area if the radius increases from 4 to 4.02cm, the height remaining constant.

4) The area of two circles of radii 7cm and 7.02cm.

5) The volume of two spheres of radii 10cm and 9.99cm.

6) The radius of a sphere is found by  measurement to be 10cm. if there be a maximum probable error of 0.05cm. in the measurement of the radius, find the maximum possible error in the computation of the surface area of the sphere.

6) Due to heating the side if a metalic cube expands from 4 to 4.05cm. find the approximately the increase in volume of the cube.

7) If there is an error of 1% in measuring the radius of a sphere, what is the approximate percentage error in the measurement of the volume of the sphere.

Tuesday, 24 September 2019

MEAN THEOREM

--    Verify Rolle's theorem --

1) 

a) f(x)= x(x-4)²on (0,4).           

b) f(x)= x²-4x+3 on (1,3).                

c) f(x)= x(x-2)² on (0,2).

d) f(x)= x²+ 5x+6 on (-3,-2)

e) f(x)= x² - 8x+6 on (2,6)

f) f(x)= (x-1)(x-2)² on (1, 2).

g) f(x)= x(x²-1)² on (0,1).

h) f(x)= (x²-1)(x-1) on (-1,2).

i) f(x)= eˣ Sin x in (0,π).      

j) f(x)= cos 2(x - π/4) on (0,π/2).

k) f(x)= sin2x on (0,π/2).

l) f(x)= cos2x on (-π/4,π/4).

m) f(x)= eˣ cosx in (-π/2,π/2).  

n) f(x)=  Sin x /eˣ on 0≤ x ≤π  

o) f(x)= sin 3x on (0,π).

p) f(x)=sinx + cosx on (0,π/2).

q) f(x)=2 sinx + sin2x on (0,π).

r) f(x)=6x/π - 4 sin²x on (0,π/6)

s) f(x)= sin²x on 0 ≤ x ≤π.

t) f(x)= sinx + cosx -1 on (0,π/2)

u) f(x)= log(x²+2) - log3 on (-1,1)


2) At what points on the following curves, is the tangent parallel to x-axis?

a) y= 16 - x² on (-1,1).               (0,16)

b) y= x² on (-2,2).                      (0,0)

c) y= 12(x+1)(x-2) on (-1,2).  (1/2,-27).

d) y= cosx -1, on (π/2, 3π/2).   (π,-2)

3) It is given that for the function f(x)= x³ - 6x³ + ax + b on (1,3), Rolle's theorem holds with c= 2 + 1/√3. Find the values of a and b, if f(1)= f(3)= 0.                              11, -6

4) It is given that for the function f given by f(x)= x³ + bx²+ ax, on (1,3). Rolle's theorem holds with c= 2+ 1/√3. Find the values of a and b.  11,-6


-- Verify Lagrange's mean value --

1)

a) f(x)= x(x -2) on (1,3).

b) f(x)= x² -1 on (2,3).

c) f(x)= x³- 2x² -x+3 on (0,1).

d) f(x)= x² -3x+2 on (-1,2).

e) f(x)= 2x² -3x+1 on (1,3).

f) f(x)= x² -2x+4 on (1,5).

g) f(x)= 2x- x²  on (0,1).

h) f(x)= (x -1)(x-2)(x-3) on (0,4).

I) f(x)= √(25-x²) on (-3,4).

j) f(x)= x +1/x on (1,3).

k) f(x)= x(x+4)² on (0,4).

l) f(x)= √(x² -4) on (2,4).

m) f(x)= x²+ x -1 on (0,4).

n) f(x)=sin x -sin2x on (0,π).

o) f(x)= tan⁻¹x on (0,1).

p) f(x)= log x on (1,2).


2) Find a point on the parabola y= (x-4)², where the tangent is parallel to the chord joining (4,0) and (5,1).    (9/2,1/4)

3) Find a point on the curve y= x²+x, where the tangent is parallel to the chord joining (0,0) and (1,2).    (1/2,3/4)

4) Find a point on the parabola y= (x- 3)², where the tangent is parallel to the chord joining (3,0) and (4,1).    (7/2,1/4)

5) Find the points on the parabola y= (x³ - 3x, where the tangent to the curve parallel to the chord joining (1,-2),(2,2).    (±√(7/3, ±2/3 √(7/3), 

6) Find a point on the curve y= x³+1 where the tangent is parallel to the chord joining (1,2),(3,28).   (√(13/3, ²√13/3)³ +1.


          






  




Saturday, 21 September 2019

MATHEMATICAL INDUCTION.

 MATHEMATICAL  INDUCTION

A) Prove by the principal of induction:

1) 1²+ 2²+3²+....n²=n/16 (n+1((2n+1).

2) 1.2+2.3+ 3.4+..n(n+1)=1/3. n(n+1)(n+2).

3) 1/1.2 + 1/2.3+ 1/3.4 +... 1/n(n+1) =n/(n+1).

4) 1/1.2.3 + 1/2.3.4 +...+ 1/ n(n+1)(n+2) =n(n+3)/{4(n+1)(n+2)}.

5) (1-1/2)(1-1/3)(1-1/4)...(1- 1/(n+1) = 1/(n+1)

6) a+ar+ ar²+ ...arⁿ⁻¹= a(rⁿ -1)/(r-1)

7) x+ 4x +7x +..(3n-2)x=nx(3n-1)/2

8) 2+4+6+8+...2n = n(n+1)

9) 1+3+3²+ ...+3ⁿ⁻¹=1/2(3ⁿ-1)

10) 2+6+18+...2.3ⁿ⁻¹=(3ⁿ-1)

11) 1.2+2.2²+3.2³+... +n2ⁿ= (n -1) 2ⁿ⁺¹ +2

12) 3.2²+3²2³+3³2⁴+...+3ⁿ.2ⁿ⁺¹=12/5 (6ⁿ -1)

13) 1.3+3.5+5.7+..+(2n-1)(2n+1)= n(4n²+6n -1)/3

14) 5+15+45+....5(3)ⁿ⁻¹=5/2(3ⁿ-1)

15)1.1!+2.2!+3.3!+...+n.n!= (n+1)! - 1

 16) 1/(1.4) + 1/(4.7)+ 1/(7.10)+.... +1/{(3n-2)(3n+1) = n/(3n+1)

17) 1+5+12+22+35+......to n terms =  n²(n+1)/2

18)(1+3)(1+ 5/4)(1+7/9)...{1+ (2n+1)/n²} = (n+1)²

19) 




B) Prove by the principal of induction

1) n(n+1)(2n+1) is divisible by 6

2) n(n+1)(n+5) is multiple of 3

3) n(n²+20) is divisible by 48 if n is even.

4) 2³ⁿ-1 is divisible by 7.

5) 7ⁿ- 3ⁿ is divisible by 4 for all n belongs to N 

6) (10²ⁿ⁻¹+1) is divisible by 11

7) (2.7ⁿ+ 3. 5ⁿ -5) is divisible by 24.

8)3²ⁿ⁺²- 8n -9 is divisible by 8.

9)10ⁿ+3+3.4ⁿ⁺²+5 is divisible by 9

10) 3⁴ⁿ⁺²- 5²ⁿ⁺¹ is multiple of 14.

11) 7²ⁿ + (2³ⁿ⁻³)3ⁿ⁻¹ divisible by 25

12) 11ⁿ⁺²+ 12²ⁿ⁺¹ divisible by 133

13) (x²ⁿ-1) is divisible by (x-1) where x≠1.

14) {(41)ⁿ-(14)ⁿ} is a multiple of 27.



C) Prove by the principal of induction

17) 1+2+3....+n < (2n+1)²

18) 2ⁿ > n 

) 3ⁿ ≥ 2ⁿ 

) (1+2+3+..n)< 1/8 (2n+1)².


Friday, 13 September 2019

POISSON DISTRIBUTION (C )

        POISSON DISTRIBUTION

1) Poisson distribution is a ___ probability distribution.

A)  continuous B) discrete

C) both A and B D)neither A nor 

2) which one is uni-parametric distribution ?

A)Binomial Distribution B) normal distribution C) Poisson distribution D) geometric Distribution


3) which one is not a condition of poison Model

A) the probability of having success in a small time interval is constant.

B) the probability of having success in a small interval is independent of time and also earlier.

C)  the probability of having success more than one in a small time interval is very small. D) n


4) ____Distribution is the limiting case of Binomial Distribution.

A) normal distribution

 B) poisson distribution 

C) Chi square distribution

D) F- distribution 


5) Poisson distribution may be 

A) bimodal B) unimodal  C) multimodal  D) either A or B) above and not C.


6) ____ distribution is sometimes known as the "distribution of rare events".

A) binomial  B) normal C) geometric D) Poisson


7) In ____ distribution, mean = variance.

A) Chi square B) normal  C) poison D) hypergeometric 


8) when the number of trials is large, then the distribution used is:

A) poison distribution  B) F-distribution  C) t- Distribution D) Normal Distribution


9) For a poison distribution

 A) standard deviation and variance are equal  B) mean variance are equal C) mean and standard deviation are equal D) both A and B above.


10)  number of radioactive atoms decaying in a given interval of time is an example of

A) normal distribution B) binomial distribution C) Poisson distribution D) n


11) In Poisson distribution, probability of success is very close to:

A)1 B) 0.8 C) 0 D) none 


12) poison distribution is: 

A) always negatively skewed. B) always positively skewed C) always asymmetric D) symmetric only when m= 2 


13) the poison distribution tends to be symmetrical if the mean value is:

A) zero B) very low C) high D) n 


14)  for Poissonon fitting to an observed frequency distribution

A) we equate the poisson parameter to the mean of the frequency distribution. B)  we equate the poisson parameter to the mode of the distribution C)  we equate the poissonon parameter to the median of the distribution D) n 


15) number of misprints per page of a thick book follows: 

A) normal distribution B) poisson distribution C) standard normal distribution D) F-distribution


16) If a random variable X follows  Poisson distribution, such that P(X=1)=P(X=2), then mean of the Distribution.

A) 2     B) 4. C) 3 D) 2 


17) If a random variable X follows Poisson distribution, such that P(X=1)=P(X=2), then mean and variance are..

A) 4,4  B) 3,3  C) 2,2  D) 5,5 


18) A random variable X follows  Poisson distribution, such that P(X=k)=P(X=k+2), then mean and variance is:

A) k-1, k-1 B) k+2, k+2 C) k+3, k+3 D) k+1, k+1. 

19) For a Poisson Variate, if P(X=0)= P(X=1)= k, the value of k is 

A) e  B) 1/e. C) e² D) 1/√e E) none

20) If a random variable X follows  Poisson distribution, such that P(X=0)=P(X=1), then P(X= 2)=? 

A) e B) 1/2e. C) 2/e D) 1/e 


21) For a Poisson distribution X, if P(X=0)= 0.2, then the variance of the Distribution is: 

A) log 2 B) log 4 C) log 5 D) none 


22) The mean of a Poisson Distribution is 0.5, then ratio of P(X=3) to P(X=2) is ? 

A) 1:6  B) 6:1  C) 1:3  D) 2:5 


23) For a Poisson variate X, P(X=2)= 3P(X=3), then the mean of X is: 

A) 0.50 B) 0.33 C) 1.00 D) 0.25 


24) If X is a Poisson Variate withP(X=0)= 0.80, then variance is 

A) log 10 B) log(5/4) C) log e D) n 

** A random variable X follows Poisson distribution with parameter 4. Find the probability (given e⁻⁴=0.0183)

25) P(X=0) 

A) 0.0183 B)0.15616 C)0.1952 D) n 


26) P(X=1) 

A)0.1464 B)0.0732 C)0.3725 D) n 


27) P(X=2) 

A) 0.3752 B) 0.0732 C) 0.1464 D) n 


28) P(X=3) 

A) 0.1952 B)0.1529 C)0.1295 D) 0.2052


29) P(X=4) 

A) 0.5219 B) 0.1952 C) 0.2952 D) 0.3952 


30) P(X=5) 

A) 0.15616 B) 0.16516 C) 0.26514 D) 0.21569 


31) P(X<2) 

A) 0.1595 B) 0.0915 C) 0.1554 D) 0.0947


32) P(X is atleast 3) 

A) 0.7621 B) 0.2671 C) 0.6721 D) n 


33) P(X is almost 2) 

A) 0.3297 B) 0.2549 C) 0.2379 D) N 


34) P(X is more than 3) 

A) 0.6659 B)0.5596 C) 0.5779 D) 0.4081 


35) P(X is 2 or more than 2) 

A) 0.2497 B) 0.4296 C) 0.4081 D) 0.7259 


36) P(3 <X<5) 

A) 0.5219 B) 0.1952 C) 0.2954 D) 0.3459 


37) P(3≤ X<5) 

A) 0.3904 B) 0.2904 C) 0.1904 D) 0.0904 


38) P(3<X<5) 

A) 0.3595 B) 0.3513 C) 0.4513 D) 0.2549 


39) (3 ≤ X≤5) 

A) 0.5987 B) 0.4598 C) 0.4665 D) 0.5465 


40) The standard Deviation of the given Poisson distribution is ? 

A) 1   B) 2     C) 3    D) 4 


41) For a Poisson distribution mean is 10, standard Deviation is 5 find the point of fallacy.

A) The given statement has no fallacy B) If mean of the distribution is 10, standard deviation should be 3 C) If Standard deviation is 5, then mean of the Distribution should be 25. E) none


**** If 3% of the bolts manufactured by the company are defective. What is the probability that is a sample at 200 bolts.         (e⁻⁶= 0.00248)

42) 5 bolts will be defective ? 

A) 0.611 B) 0.15 C) 0.160 D)0.258 


43) None is defective ? 

A) 0.00248 B) 0.00496 C) 0.00124 D) none 


44) The variance of a Poisson distribution is 4. Find the probability x=3        (e⁻⁴=0.0183)

A)0.1965 B)0.1952 C)0.1925 D)0.2519


45) The standard Deviation of a Poisson Variate is √3. Find the probability that x=2   (e⁻³=0.0498) 

A)0.2241 B) 0.1422 C)0.2142 D) 0.2214 


46) The standard Deviation of a Poisson Variate is 2. Find the probability that x=2.   (e⁻⁴= 0.0183) 

A)0.1646 B)0.1596 C) 0.1446 D)0.1464 


** If the probability that an individual suffers a bad reaction from a particular injection is 0.01. find the probability that out of 500 individuals:.     (e⁻⁵= 0.00674)

47) Exactly two will suffer from bad reaction ? 

A)0.08425 B) 0.09425 C) 0.12549 D) none 


48) More than 2 individuals will suffer a bad reaction. 

A) 0.87995 B) 0.87551 C) 0.85229 D) none 


49) In a company manufacturing toys. It is found that 1 in 500 is defective. Find the probability that there will be at most two defective in a sample of 2000 units.  (e⁻⁴= 0.0183) 

A)0.2597 B)0.3549 C)0.2549 C)0.2379 


50) If 2% of the items made by a factory are defective. Find the probability that the there are 3 defective items in a sample of 100 items. 

A) 0.190 B)0.154 C)0.180 D) none 


*** Experience has shown that, as the average, 2% of the airline's flights suffer a minor equipment failure in an aircraft. Estimate the probability that the number of minor equipment failure in the next 50 flights will be :

51) 0(zero) 

A) 0.3879 B)0.1498 C)0.3598 D)n 


52) atleast 2(Two). 

A)0.2224 B)0.4424 C)0.2242 D) N 


*** Between 4 and 5 P. M, the average number of phone calls per minute coming in to the switchboard of the company 3. Find the probability that in one particular minute there will be ? (e⁻³= 0.498) 

53)No phone call.

A) 0.0498 B)0.0598 C)0.4598 D) 0.4587 


54) Exactly 2 phone calls.

A)0.1422 B)0.2214 C)0.2251 D)0.2241


55) Between the hours 2 p.m. and 4 p.m. the average number of phone calls coming into the switch board of the company is 2.35. find the probability that in a particular minute there will be at most 2 phone calls (e⁻²•³⁵= 0.095374)

A) 0.582854 B) 0.584987 C) 0.549875 D) none 

56) Assume that 4% of the output of the factory making certain parts is defective and that 100 units.are in package, what is the probability that almost 3 defective parts may be found in package. ((e⁻⁴= 0.0183) 

A)0.4331 B)0.3341 C)0.3314 D) n 


** is found that the number of accidents in a factory follows poisson distribution with a mean of two accidents for week (e⁻²=0.135) 

57) find the probability that no accident occurs in a week 

A)0.531 B)0.315 C)0.135 D) n 


58) find the probability that the number of accident in a week exceeds 2. 

A)0.325 B)0.523 C)0.352 D) none 


*** The number of accidents attributed in a year to the taxi drivers in a city follows poisson distribution with mean 3. Out of 1000 taxi drivers, find approximately (e⁻¹= 0.3879,e⁻²= 0.1353, e⁻³= 0.0498) 

59) the number of taxi driver with no accident in a year. 

A) 45    B) 60   C) 50    D) 75 


60) the number of taxi drivers with more than 3 accidents in a year. 

A) 303 B) 353 C) 453 D) 403 


61) the average number of misprints per page of a book is 1.5.  what is the probability that a particular page is free from  misprints? 

A)0.12    B) 0.22. C) 0.32 D) none 


62) taking data from the previous questions; if the book contains 800 pages. how many of these contain more than one misprint?(e⁻¹= 0.22) 

A) 303 B) 353 C) 360 D) 460 


63) If the chance of being killed by flood during a year is 1/3000, use poisson distribution to calculate the probability that out of 3000 persons living in a village at least one would die in a flood in a year 

A) e⁻¹  B) e  C) 1 - e⁻¹  D) none 


64) A radioactive source emits on the averaged 2.5 particles per second. calculate the two or more particles will be emitted in an interval of four seconds. 

A) 11e⁻¹⁰ B)1- 10e⁻¹⁰C)1-11e⁻¹⁰ D) n


65) In turning out certain toys in a manufacturing process in a factory, the average number of defective is 10%. What is the probability that exactly three defectives in a sample of 10 toys chosen at random, by using Poissonon approximation to the Binomial Distribution(e= 2.72)

A)0.041 B)0.051 C)0.031 D)0.061


*** 1/5% of the blades produced by a blade manufacturing factory turn out to be defective. the blades are supplied in a packet of 10.  use poisson distribution to calculate the number of packets in a consignment of 100000 packets. (11e⁻⁰•⁰²= 0.9802)

66) containing no defective.

A) 97580 B) 98020 C) 98000 D) 99020 


67) containing one defective. 

A)1900 B) 1978 C)1987 D)1960 


68) containing 2 defectives 

A)15  B) 20   C) 25   D) 35 


69) A manufacture of blades knows that 5% of the product is defective. If he sells blades in boxes of 100 and guarantees that not more than 10 blades will be defective. what is  probability (approximately) that a box will fail to meet the guaranteed quantity ?

A) 1 - e⁻⁵  B) e⁻⁵[1+ 5/1! + 5²/2! + 5³/3! +.....+5¹⁰/10!]  C) 1 -e⁻⁵[1+ 5/1! + 5²/2! + 5³/3!+.....+5¹⁰/10!] D) n


70) A local electric appliance has found from experience the demand for the tubelight is distributes as Poisson distribution with a mean of 4 tubelight per week. If the shop keeps 6 tubes during a particular week what is the probability that the demand will exile the supply during that week ? (e⁻⁴= 0.0183)

A)0.1114 B)0.2224 C)0.1525 D)0.1254 


*** Number of road accidents in a highway during a month follows the poisson distribution with mean 6. Find the probability that in a certain month number of accident will be (e⁻⁶= 0.00248)

71) not more than three.

A)0.15248 B)0.15128 C)0.15498 D)0.25149 


72) between 2 and 4. 

A) 0.08901 B)0.09928 C)0.08928 D) n 


*** A manufacturer who produces medicine bottles, find that 0.1% bottles are defective. the bottles are packed in boxes containing 500 bottles. A drug manufacturer buys 100 boxes from the producers of bottles. using poisson distribution find how many boxes will contain (e⁻⁰•⁵= 0.6065)

73) no defectives

A) 40  B) 50 C) 69 D) 61


74) at least two defectives.

A) 8    B) 9     C) 10    D) 15 


75) the probability that a poisson variate x takes a positive value (1 - e⁻¹•⁵). Find the variance and also the probability that x lies between -1.5 and 1.5.

A)1.5, 2.5/e B) 1.5, 2.5/e¹•⁵ C) 1.5, 1.5 D) none 


76) In a certain factory blades are manufactured in packets of 10. There is a 0.2% probability that for any blade to be defective. using poisson distribution calculate the number of packets containing two defective blades in a consignment of 20000 packets. (e⁻⁰•⁰²= 0.9802)

A) 2   B) 4   C) 8     D) 16 


77) A certain Hospital usually admits patients per day. On an average 4 patients in 100 require special facilities found in special rooms of the hospital. On the morning of certain days it is found that there are 4 such rooms available. Assuming that 50 patients will be admitted, find the probability that more than 4 patients will require such special rooms.(e⁻²= 0.13534)

A)0.02525 B) 0.05226 C)0.05262 D) n 


78) If X is a Poisson variable such that P(X=2)= 9P(X=4)+ 90P(X=6),  find the mean and variance of X.

A) 2.   B) 3.   C) 1   d) 4