-- Verify Rolle's theorem --
1)
a) f(x)= x(x-4)²on (0,4).
b) f(x)= x²-4x+3 on (1,3).
c) f(x)= x(x-2)² on (0,2).
d) f(x)= x²+ 5x+6 on (-3,-2)
e) f(x)= x² - 8x+6 on (2,6)
f) f(x)= (x-1)(x-2)² on (1, 2).
g) f(x)= x(x²-1)² on (0,1).
h) f(x)= (x²-1)(x-1) on (-1,2).
i) f(x)= eˣ Sin x in (0,π).
j) f(x)= cos 2(x - π/4) on (0,π/2).
k) f(x)= sin2x on (0,π/2).
l) f(x)= cos2x on (-π/4,π/4).
m) f(x)= eˣ cosx in (-π/2,π/2).
n) f(x)= Sin x /eˣ on 0≤ x ≤π
o) f(x)= sin 3x on (0,π).
p) f(x)=sinx + cosx on (0,π/2).
q) f(x)=2 sinx + sin2x on (0,π).
r) f(x)=6x/π - 4 sin²x on (0,π/6)
s) f(x)= sin²x on 0 ≤ x ≤π.
t) f(x)= sinx + cosx -1 on (0,π/2)
u) f(x)= log(x²+2) - log3 on (-1,1)
2) At what points on the following curves, is the tangent parallel to x-axis?
a) y= 16 - x² on (-1,1). (0,16)
b) y= x² on (-2,2). (0,0)
c) y= 12(x+1)(x-2) on (-1,2). (1/2,-27).
d) y= cosx -1, on (π/2, 3π/2). (π,-2)
3) It is given that for the function f(x)= x³ - 6x³ + ax + b on (1,3), Rolle's theorem holds with c= 2 + 1/√3. Find the values of a and b, if f(1)= f(3)= 0. 11, -6
4) It is given that for the function f given by f(x)= x³ + bx²+ ax, on (1,3). Rolle's theorem holds with c= 2+ 1/√3. Find the values of a and b. 11,-6
-- Verify Lagrange's mean value --
1)
a) f(x)= x(x -2) on (1,3).
b) f(x)= x² -1 on (2,3).
c) f(x)= x³- 2x² -x+3 on (0,1).
d) f(x)= x² -3x+2 on (-1,2).
e) f(x)= 2x² -3x+1 on (1,3).
f) f(x)= x² -2x+4 on (1,5).
g) f(x)= 2x- x² on (0,1).
h) f(x)= (x -1)(x-2)(x-3) on (0,4).
I) f(x)= √(25-x²) on (-3,4).
j) f(x)= x +1/x on (1,3).
k) f(x)= x(x+4)² on (0,4).
l) f(x)= √(x² -4) on (2,4).
m) f(x)= x²+ x -1 on (0,4).
n) f(x)=sin x -sin2x on (0,π).
o) f(x)= tan⁻¹x on (0,1).
p) f(x)= log x on (1,2).
2) Find a point on the parabola y= (x-4)², where the tangent is parallel to the chord joining (4,0) and (5,1). (9/2,1/4)
3) Find a point on the curve y= x²+x, where the tangent is parallel to the chord joining (0,0) and (1,2). (1/2,3/4)
4) Find a point on the parabola y= (x- 3)², where the tangent is parallel to the chord joining (3,0) and (4,1). (7/2,1/4)
5) Find the points on the parabola y= (x³ - 3x, where the tangent to the curve parallel to the chord joining (1,-2),(2,2). (±√(7/3, ±2/3 √(7/3),
6) Find a point on the curve y= x³+1 where the tangent is parallel to the chord joining (1,2),(3,28). (√(13/3, ²√13/3)³ +1.
No comments:
Post a Comment