Monday, 30 September 2019

Differential Equations of First Order and First Degree

       Equation Of First Order 
                        And
                 First Degree

     -------------------------------------------------

        Separation of variables
                   ***********

If in an equation, it is possible to get all the functions of x and dx in to one side and all the function of y and dy to the other, the variable are said to be separable.

Working rule to solve an equation in which variables are separable.

step 1 )
Let dy/dx =f₁(x) f₂(y)    ..(1)
be given equation f₁(x) is a function of x alone and f₂(y) is a function of y alone.

step 2)
From (1) separating variables, 
[1/f₂(y)] dy = f₁(x) dx ............(2)

step 3)
Integrating both sides of (2), we have ∫[1/f₂(y)] dy=∫f₁(x)dx + c...(3)
where c is constant of integration, is the required solution.

Note 1:
In all solution (3), an arbitrary constant c must be added in any one side only. If c is not added, then the solution obtained will not be a general solution of (1).

Note 2: To simplify the solution (3), the constant of integration can be chosen in any suitable form so as to get the final solution in a form as simple as possible. Accordingly, we are write log c, tan⁻¹ c, sin c, eᶜ, 
(1/2). C , (-1/3). C etc in place of c in some solutions.

Note 3 :
The students are advised to remember by heart the following formulas. These will help them to write solution (3) in compact form

i) log x+ log y= log xy

ii) log x - log y = log(x/y)

iii) n log x = log xⁿ

iv)tan⁻¹x+tan⁻¹y= tan⁻¹[(x+y)/(1-xy)]

v) tan⁻¹x-tan⁻¹y = tan⁻¹[(x-y)/(1+xy)]

vi) eˡᵒᵍ ᶠ⁽ˣ⁾ = f(x).

                     EXAMPLE
                     ---------------

1) dy/dx = eˣ⁻ʸ + x² e⁻ʸ

dy/dx =  e⁻ʸ( eˣ +x²) 

or  eʸ dy = (x² +eˣ) dx

integrating  eʸ = x³/3 + eˣ + c, c is con.

2) √(1+x²+y²+x²y²) + xy (dy/dx) = 0

=√{(1+x²)(1+y²)} + xy(dy/dx) = 0

= √(1+x²)dx /x  + ydy/√(1+y²) =0

=(1+x²)dx/x√(1+x²)+ydy/√(1+y²)
                                                  =0

= ∫ dx/x√(1+x²) +∫xdx/√(1+x²)+
                                    ydy/(1+y²) =c

= log x - log{1- √(1+x²)}+ 
                        √(1+x²)+√(1+y²)  =c

            

               EXERCISE 
                 *********

1) dy/dx  =   eˣ⁺ʸ + x² eʸ 

2) (dy/dx)tan y=sin(x + y) + sin(x-y)

3) dy/dx=(sinx+xcosx)/
                               {y(2log y+1)}

4) dy/dx={x(2log x+1)}/
                               (siny +ycosy)

5) log(dy/dx) = ax + by

6) y - x(dy/dx) = a(y² + dy/dx)

7) 3eˣ tan y dx + (1- eˣ)sec² y dy =0

8)  ₑx+y  dy ₌ ₓ² ₑx³+y  dx

9) dy/dx = eˣ ⁺ ʸ when x=1, y=1. find y when x= -1

10) (eˣ + 1)y0 dy = (y +1)eˣ dx

11) (dy/dx) - y tan x = - y sec² x

12) x√(1+y²) dx + y√(1+x²) dy =0

13) (2ax+x²)(dy/dx) = a² + 2ax

14) dr = a (r sinθ dθ - cosθ dr)

15) (eʸ +1) cosx dx + eʸsin x dy = 0

16) √(a+x) (dy/dx) +x = 0

17) dy/dx = √{(1-y²)/(1 -x²)}

18) (x²-yx²)dy + (y²+xy²) dx =0

19) (xy² +x)dx + (yx² +y) dy = 0

20) sec²x tany dx+sec²y tan xdy =0

21) (1+x)y dx + (1+y)x dx = 0

22) (1- x²)(1 - y) dx = xy(1+y)dx

23) x²(y+1)dx + y²(x - 1) dy =0

24) (dy/dx)tan y=sin(x+y)+sin(x - y)

25) y - x dy/dx = 3(1+ x² dy/dx)

26) cosy log(secx +tanx) dx =
       cos xlog(sec y + tan y) dy

27) x dy - y dx = (a² + y²)¹/² dx

  
     MISCELLANEOUS PROBLEM

1) Find the curves passing through (0,1) and satisfying sin(dy/dx)

2) Find the function f which satisfies the equation df/dx = 2f, given that f(0) = e³

--------------------------------------------------------

       VARIABLE UNSEPARABLE
       ------------------- *** -------------------
Transformation of some equations in the form in which variables are separable Equations of the form
dy/dx = f(ax+ by+ c).      OR
dy/dx = f(ax + by)
can be reduced to an Equation in which variables can be separated.
For this purpose, we use the substitution  ax +by+c  = v OR
                       ax + by=v

EXAMPLE (1)

dy/dx = (4x + y +1)²
Let 4x + y +1 = v.              ........(1)
Differentiating (1) with respect to x, we get 4 + (dy/dx)= dv/dx
   OR
dy/dx=(dv/dx) - 4            ........(2)
Using (1) and (2),
the equation becomes
(dv/dx) - 4 = v² OR 
dv/dx = 4 + v²
Now , separating variables x and v,
So dx =dv/(4+v²)
Integrating,
x + c ' = (1/2).Tan⁻¹(v/2),
where c ' is an arbitrary constant.
Or, 2x + c =  Tan⁻¹(v/2)
Or, v= 2 tan(2x +c), Where c = 2c '
Or, 4x + y + 1=2 tan(2x +c),
using (1)

EXAMPLE (2)
(x+y)² (dy/dx) = a².
Let x+y=v                            .......(1)
Differentiating 1+(dy/dx)   OR
       dy/dx= dv/dx - 1         .......(2)
Using (1) and (2) the given Equation becomes
v²(dv/dx -1)= a²     OR
v²= dv/dx = a²+v²  OR
dx=v²/(v²+a²)         OR
dx = [1- a²/(a²+v²)]
Integrating,
x+c = v - a²  (1/a) Tan⁻¹(v/a),
where c is arbitrary constant.
Or x +c= x+y - Tan⁻¹{(x+y)/2}
Or y - a Tan⁻¹{(x+y)/a}= c

EXERCISE
***********

1) dy/dx=sec(x+y)
         or
cos(x+y)dy=dx

2) dy/dx= sin(x+y) + cos(x +y)

3) (x+y)(dx - dy) = dx+ dy

4) dy/dx = (4x +6y +5)/(3y +2x +4)

5) (x+2y -1)dx = (x + 2y +1) dy

6) dy/dx= (x +y)²

7) dy/dx +1 = eˣ⁺ʸ

8) (2x +y +1) dx + (4x +2y -1) dy= 0

9) (x - y - 2)dx - (2x - 2y -3) dy =0

10) (x +y +1) (dy/dx) = 1

11) sin⁻¹(dy/dx) = x +y

12) (2x + 4y +3)(dy/dx) = 2y +x + 1

13) (4x+6y+5)/(3y+2x+4)(dy/dx)=1

14) dy/dx= (x-y+3)/(2x - 2y +5)

15) (2x +2y +3)dy - (x+y+1) dx =0

16) (x -y)² (dy/dx) = a²

17) (x+y-a)/(x+y-b)(dy/dx) =
        (x+y+a)/(x+y+b)

18) dy/dx = cos (x+y)

19) dy/dx= eˣ⁺ʸ given x=1, y=1,  
       prove y(-1)= -1

20) dy/dx= (x+y+1)/(x+y-1)
       when y= 1/3, at x= 2/3

21) (x+y-1)dy = (x+y) dx

22) dy/dx = (x-y+3)/(2x-2y+5)

--------------------------------------------------------

     HOMOGENEOUS EQUATION 
        ------------------ (  ) ------------------

Definition)
A differential equation of first order and first degree is said to be homogeneous if it can be put in the form         dy/dx = f(y/x)

Working Rule)
Let the given equation be homogeneous. then , by definitiin, the given equation can be put in the form      dy/dx =f(y/x) .......(1)

To solve(1),let y/x= v  i.e., y=vx ..(2)
Differentiating w.r.t.x, (2)
dy/dx= v+x(dv/dx  ...(3)
Using (2) and (3), (1) becomes
v+ x dv/dx = f(v) or x dv/dx=f(v) -v
separating the variables x and v, we have  dx/x =ln(dv/{f(v) -v}
so that 
log x + c = dv/{f(v) -v} where c is an arbitrary constant. after integratiin, replace v by y/x.

Examples
**********

1) (x³+3xy²)dx+(y³+3x²y)dy =0

given dy/dx = -(x³+3xy²)/(y³+3x²y)

 dy/dx ={1+3(y/x)²}/{(y/x)³+3(y/x)} 
  take y/x =v, i.e., y=vx
  so that dy/dx = v+ x (dv/dx) 
  so v+ x dv/dx = -(1+3v²)/(v³+3v)
  or x dv/dx = -(1+3v²)/(v³ +3v)  - v
                  = -(v⁴ +6v² +1)/(v³ +3v)
or 4dx/x=-(4v³ +12v)/
                               (v⁴ + 6v² +1)dv

integrating 4 log x= - log(v⁴+6v²+1) + log c, c being arbitrary constant.
or log x⁴ = log[c/(v⁴+6v² +1)], i.e.,   
  x⁴(v⁴+6v²+1)=c
  or y⁴ +6x²y²+x⁴ +c
  or (x²+y²)² +4x²y² =c  as y/x =v

                   EXERCISE
                   ----------------

1) (x² +y²)dx - 2xydy =0

2) y² +x² (dy/dx) = xy(dy/dx)

3) (x² +xy)dy = (x²+ y²) dx

4) dy/dx = y/x  + sin(y/x)

5) (x² +y²) (dy/dx) = xy

6) (x² -y²) dy = 2xy dx

7) (x³ - y³)dx + xy² dy =0

8) y² dx + (xy +x²) dy =0

9) x(dy/dx) + (y²/x)= y

10) x²y dx - (x³+ y³) dy = 0

11) (x +y) dy + (x - y ) dx = 0
                       or
       y - x((dy/dx) = x + y(dy/dx) 

12) x(x - y)dy + y² dx =0

13) x(x - y) dy = y(x + y)dx

14) xsin (y/x) (dy/dx)= ysin (y/x) - x

15) x² dy + y(x+ y)dx =0

16) (x³ - 3xy²)dx = (y³ - 3x²y) dy

17) 2 (dy/dx) = [y(x + y)/x²] 
                        or
      2(dy/dx) - (y/x) = y²/x²

18) (x³ - 2y³) dx + 3xy² dy =0

19) dy/dx = (xy² - x²y)/x³

20) (x² + y²) dx +2xy dy = 0

--------------------------------------------------------

   EQUATION REDUCIBLE TO 
     HOMOGENEOUS FORM.
        --------------(  )------------------

Equ.   dy/dx=(ax+by+c)/(a′x+by +c)

              where a/a′ ≠ b/b′    .........(1)

can be reduced to homogenous as

Take x= X + h  and y =Y+k ...(2)

where X and Y are new variables and h and k are constants to be chosen that the resulting Equation in terms of X and Y may become homogeneous.

From (2), dx=d X and dy= dY 

so that dy/DX = dY/dX.        ...(3)

Using (2) and (3), (1) becomes

dY/dX= {a(X+h)+b(Y+k)+c}
                          {a′(X +h)b′(Y+k)+c′}

  = {aX +bY +(ah+bk+c)}
          {a′X +b′Y +(a′h+b'k+c)}  .....(4)

In order to make (4) homogeneous, chose h and k so as to satisfy the following two Equation ah + bk+c=0 and a'h +b'k+c' =0.  ........(5)
Solving (5), h= (bc' -b'c)/(ab' - a'b) and k= (ca' - c'a)/(ab' - a'b) .......(6)

Given that a/a' ≠ b/b'. Therefore, 

(ab' - a'b) ≠ 0. Hence, h and k given by (6) are meaningful, i.e., h and k will exist. Now, h and k are shown. So from (2), we get

X= x - h.  And Y= y - k.       .....(7)

In view of (5), (4) reduces to

dY/dX = (aX +bY)/(a'X +  b'Y)
             = {a+b(Y/X)}/{a'+b'(Y/X)

Which is surely homogeneous Equation in X and Y and can be solved by putting Y/X =v as usual. After getting solution in terms of X and Y, we remove X and Y by using (7) and obtain solution in terms of the original variables x and y.

EXAMPLE
**********

dY/dx = (x+2y -3)/(2x +y -3)

Let x= X+h, and y=Y+k

So dy/dx= dY/dX. ................(1)

So Equation becomes

dY/dX={X+2Y+(h+2k-3)}/

           {2X +Y+(2h+k - 3)} ........(2)

Choose h,k so that

h+2k-3=0, and 2h+k - 3=0 ......(3)

Solving (3) we get h=1, k=1 so in(1) we have X=x - 1, and Y = y - 1.....(4)

Using (3) in (2), we get

dY/dX= (X+2Y)/(2X+Y)

          = {1+(2Y/X)}/{2+(Y/X)} ...(5)

Take Y/X=v, i.e., Y=vx

                   dY/dX= v+X(d v/dX)...(6)

From (5) and (6), we have

v+X d v/dX=(1+2v)/(2+v)

Or X dv/dX = (1+2v)/(2+v)  - v

                    = (1- v²)/(2+v)

Or dX/X ={(2+v)dv}/{(1 -v)(1+v)}

=[1/2 {1/(1+v)}  +3/2{1/(1-v)}] dv,

Integrating

 logX+logc=(1/2)[log(1+v)- 3log(1-v)]

Or 2 log (cX)= log(1+v)/(1-v)³

Or X²c² = (1+v)/(1 - v)³

Or X²c²(1-Y/X)³=1+ Y/X, as v= Y/X

Or c²(X-Y)³= X+Y

or c²{x-1-(y-1)}²= x-1+y-1,.   ...by (4)

Or c'(x-y)²= x+y-2, taking c'= c².c' being an arbitrary constant.

                   EXERCISE

                 *************

1) dy/dx + (x-y-2)/(x-2y-3)=0

2) dy/dx= (x+y+4)/(x-y-6)

3) dy/dx= (x-2y+5)/(2x+y-1)

4) dy/dx= (x+y-2)/(y-x-4)

5) (2x²+3y²-7)x dx-(3x²+2y²-8)y dy=0

6) dy/dx= (x+2y+3)/(2x+3y+4)

7) dy/dx= (y-x-1)/(y+x+5)

8) dy/dx=(2x +2y -2)/(3x+y-5)

9) dy/dx= (2x-y+1)/(x+2y-3)

10) (x+2y-2)dx +(2x-y+3) dy=0

11) (2x+3y-5)(dy/dx +(3x+2y-5) =0

12) (x -y)dy = (x+y+1)dx

13)(6x+2y-10)(dy/dx)-2x-9y +20 =0

14) (6x -2y -7) dx = (2x +3y -6) dy

15) (3y -7x +7)dx+ (7y -3x +3) dy=0

16) (x-y-1)dx + (4y+x-1)dy =0

17) (2x +3y +4) dy = (x+2y +3) dx.

  

No comments:

Post a Comment