Wednesday, 29 September 2021

RANK CORRELATION (C)

RANK CORRELATION COEFFICIENT

******************************


1) The coefficient of rank correlation of the marks obtained by 10 students in Mathematics and Statistics was found to be 0.5. It was then detected that the difference in ranks in the two subjects for one particular student was wrongly taken to be 3 in place of 7. What should be the correct rank correlation coefficient.

A) 0.26. B) -0.26. C) 0.62 D) 0.623


2)  R':  1       2      3       4         5

     R":  5       4      3       2         1                find R.

A) 1.    B) 0. C) - 1.   D) none


3) If sum of squares of difference in two ranks is 33 and Number of variables are 10, Find the value of coefficient of rank correlation.

A) 0.8. B) -0.80. C) 0.94. D) -0.94


4) Find rank correlation coefficient

R' :    1     2     3    4     5

R":.   1      2     3    4     5

A) 1.      B) 0. C) -1.  D) none


5) If n=10, and ∑D² =280 Find R.

A) 0.70. B) -0.7. C) 0.645.  D) none


6) If n=10 and ∑D² =30 find R.

A) 0.28. B) -0.82. C) 0.82. D) -0.28


7) If rank correlation coefficient is 0.60 and N=10 find ∑D² where D is the difference in ranks of the

  two series.

A) 61.  B) 64. C) 74.    D) 66


8) The coefficient of rank correlation between the marks in Statistics and Mathematics obtained by a certain group of students is ⅔ and the sum of the squares of the difference in ranks is 55. How many students are there in the group ?

A) 10  B) 9   C) 12  D) more than 15


9) Find rank correlation coefficient

Roll no.     Marks in. Marks in

                   Maths.       Statistics

1                 78                   84

2                 36                   51

3                 97                   91

4                 25                   60

5                 75                   68 

6                 82                   62

7                 90                   86

8                 62                   58

9                 65                   53

10               39                   47

A) 0.28. B) -0.39. C) 0.49. D) 0.82


10) Find R

Roll no.     Marks in   Marks in

                   English.            Maths

1                   43                      36

2                   29                       6

3                   35                      17 

4                   18                      14 

5                   40                       25

6                   11                       10 

7                   49                       32 

8                   10                         0 

9                    5                          3 

10                 22                       20

A) 0.95. B) -0.95. C) 0.82. D) 0.45


11) Find R

Roll no.     Marks in   Marks in

                   English.            Maths

1                   80                      85

2                   38                      50 

3                   95                      92 

4                   30                      58 

5                   74                      70 

6                   84                       65 

7                   91                       88 

8                   60                       56 

9                   66                       52

10                 40                       46

A) 0.87. B) 0.57. C) -0.57. D)0.49


12) find R

X: 80   91    99   71   61   81   70   59

Y:123 135 154 110 105 134 121106

A) -0.95. B) 0.785. C) 0.95 d) none


13) Find R

X: 75    88   95  70    60   80  81   50 

Y:120 134 150 115 110 140 142100

A) 0.93. B) -0.83. C) 0.85. D) 0.63


14) 


15) In a contest, two judges ranked eight candidates in order of their performances, as shown in the table given below. The rank Correlation coefficient is :

Candidates: A  B  C   D   E   F  G   H

JUDGE 1:     5   2   8   1  4   6   3    7

Judge 2:      4   5   7    3  2   8   1   6

A) - 0.678.            B) 0.875

C) 0.67.                D) none


16) Find R

R. N: 1    2    3     4    5    6    7       8 

X:     62  53  51  25  79  43  60    33

Y:.    52  63  45  36  72  65  45    25

A) 0.489 b) -0.64 c) 0.64 d) none


17) Find the Rank correlation

X: 70  65  71  62  58  69  78  64

X: 91  76  65  83  90  64  55  48

A) 0.3125.           B) - 0.3095

C) 0.2955.           D) - 0.2955


18) Find Rank correlation

Roll no.      Marks in.   Marks in

                   Account.        Statistics

1                     30                    15

2                     20                    40 

3                     40                    40 

4                     50                    45 

5                     30                    20 

6                     20                    30 

7                     30                    15 

8                     50                    50 

9                     10                    20 

10                    0                     10

A) 0.63. B) 0.83.  C) 0.36. D) none


19) 

20) The marks secured by a group of 10 students in Written Selection Test (X) and in the Aptitude Test (Y) are given in the following table. Calculate product-moment Correlation coefficient (r) and rank Correlation coefficient (R). The value of absolute difference between "r" and "R" is :

Test (X).        Test (Y)

  44                  24 

  42                  25 

  40                  28 

  52                  29 

  39                  32 

  32                  35

  24                  36

  46                  41

  41                  45

  50                  50

A) 0.063 b) 0.897 c)0.01 d) 0

21) 


22) 


23) Spearman's Rank correlation formula is given by
R= 1 -  6 ∑D²/(n³-n), where D stand for:
A) Sum of the rank of the two variables.
B) Difference between the rank of two variables
C) both A and B
D) either A or B


24) Spearman's Rank correlation formula  1- 6{∑D² + (m³-m))12}/(n³-n), is used when:
A) There are repeated rank in only one series
B) there are repeated ranks in any one of the series
C) There are repeated ranks in any one of the series or both of the series.
D) it is not used for repeated ranks.


25) The coefficient of rank Correlation of the marks obtained by 10 students in Mathematics and Statistics was found to be 0.5. it was then detected that the difference in ranks in the two subjects for one particular students was wrongly taken to be 3 in place of 7. What should be the correct rank Correlation coefficient?
A) +0.26 B) -0.26 C) 0.62 D) 0.623


26) If the sum of squares of difference in two ranks is 33 and number of variables are 10, find the value of Rank correlation coefficient.
A) 0.8 B) -0.8 C) 0.94 D) -0.94


27) If n=10 and ∑D² = 280, then which of the following represents the value of rank Correlation coefficient?
A) 0.7. B) -0.7. C) 0.645. D) none


28) For two series we have, ∑D²= 30 and n= 10, find the value of R
A) 0.28. B) -0.82. C) 0.82. D) -0.28

29) If R= 0.60 and n= 10. Find the value of ∑D². Where D is the difference in ranks of the two series.
A) 61.  B) 64.  C) 74.   D) 66

30) The coefficient of rank Correlation between the marks in Statistics and Mathematics obtained by a certain group of students is 2/3 and the sum of the squares of the differences in ranks is 55. How many students are there in the group?
A) 10.                        B) 9. 
C) 12.             D) more than 15







1) a 2) c 3) a 4) a 5) b 6) c 7) d 8) a 9) d 10) c 11) a 12) c 13) a 14) d 15) c 16) c 17) b 18) a 19) c 20) a 21) b 22) c 23) b 24) c 25) a 26) a 27) b 28) c 29) d 30) a

No comments:

Post a Comment