Saturday, 12 June 2021

DIFFERENTIATION (COMP)

1) If f(x)= √(x²+9), then 
lim ₓ→₄ (f(x)- f(4))/(x-4) has the value
A) 5/4 B) -4/5 C) 4/5D) none 

2) If f(x)= log|x|, x ≠ 0 then f'(x) is
A)1/|x| B) 1/x C) -1/x D) none

3) If f(x)= |logx|, then for x≠1, f'(x) is..
A) 1/x B) 1|x| C) -1/x D) none

4) If f(9)= 9 and f'(9)= 4 then           lim ₓ→₉ {√f(x) -3}/(√x -3) is..
A) 9    B) 4  C) 36   D) none

5) If f(x)= |log|x||, then f'(x) is
A) 1/|x|, x≠0 B) 1/x for |x|> 1 and-1/x for |x|<1. C) -1/x for |x|> 1 and 1/x for |x|< 1. D) 1/x for x> 0 and -1/x for x< 0 

6) if f(x)= (cosx+ i sinx)(cos 3x + i sin3x).... (Cos(2n-1)x + i sin(2n -1)x, then f"(x)= 
A) n² f(x)    B)- n⁴f(x). C) -n² f(x) D) n⁴ f(x)

7) If f(x)= xⁿ, then the value of f(1)+ f'(1)/1! + f"(1)/2! + f"'(1)/3! + ...+ fⁿ(1)/n! is
A) n   B) 2ⁿ    C) 2ⁿ⁻¹ D) n(n+1)/2 

8) Let f(x) be a polynomial in x, Then the second order of derivative of f(eˣ) is
A) f"(eˣ). eˣ+ f'(eˣ) 
B) f"(eˣ). e²ˣ+ f'(eˣ).e²ˣ
C) f"(eˣ). e²ˣ
D) f"(eˣ). e²ˣ+ f'(eˣ) eˣ.

9) Let f(x)= xⁿ, n being a non- negative integer. The value of n for which the equality f'(x+y)= f'(y) is
valid for all x, y > 0 is
A) 0   B) 1    C) 2   D) none

10) If f(x)= sinx, g(x)= x² and h(x)= logx . if F(x)= (hog of)(x), then F"(x) is equals to 
A) 2 cosec²x 
B) 2 cotx² - 4x² cosec²x²
C) 2x cotx²    D) - 2 cosec²x

11) If y= sin⁻¹{sink sinx)/(1- cosk sinx)}, then y'(0) is..
A) 1 B) 2 tank C) 1/2 tank D) sink

12) If y= logₓ2₊₄ (7x²-5x+1) then dy/dx is equal to 
A) log(x²+4){(14x-5)/(7x²-5x+1) - 2xy/(x²+4)}
B) 1/{log(x²+4)}{(14x-5)/(7x²-5x+1) - 2xy/(x²+4)}
C) log(7x²-5x+1){(2x/(x²+4) - (14x-5)y/(7x²-5x+1)}
D) 1/{log(7x²-5x+1)}{(2x/(x²+4) - (14x-5)y/(7x²-5x+1)}

13) If f(x)= sin{π/3 [x] -x²} for 2<x<3
and [x] denotes the greatest integer less than or equal to x, then f'(√(π/3)) is equal to
A) √(π/3). B) - √(π/3) C) -√(π) D) n

14) If f(x)= cot⁻¹{ xˣ - x⁻ˣ}/2 then f'(1) is
A) -1  B) 1  C) log2  D) - log 2

15) The function satisfy u=eˣ sinx ; v= eˣ cosx satisfy the equation
A) v du/dx - u dv/dx= u² + v²
B) d²u/dx² = 2v C) d²v/dx² = -2u D)n

16) If f(x)= |x- 2| and g(x)= f(f(x)), then for x> 20, g'(x) equals 
A) -1  B) 1  C) 0   D) none

17) If f(x) = |x- 2| and g(x)= f(f(x)), then for 2<x <4, g'(x) equals 
A) -1  B) 1  C) 0   D) none

18) If a curve is given by x= a cost + b/2 cos 2t and y= a sint + b/2 sin2t , then the points for which d²y/dx²= 0 are given by
A) sint= (2a²+b²)/3ab
B) cost=-  (a²+ 2b²)/3ab
C) tan t= a/b.      D) none

19) if f(x)= logₓ |ln (x)|, then f'(x)= e is 
A) e.   B) -e   c) e²    D) 1/e

20) Let f(t)= ln(t), then {d/dx ∫f(t) dt} at (x³, x²)
A) has a value zero when x= 0
B) has a value zero when x=1 and x= 4/9
C) has a value 9e² - 4e when x= e
D) has a the differential coefficient 27e - 8 for x= e

21) If g is inverse of f and f'(x)= 1/(1+xⁿ) ,  then f'(x) equals 
A) 1+ xⁿ B) 1+[f(x)]ⁿ C) 1+[g(x)]ⁿ D)n

22) If f(x)= |x| ^|sinx|, then f'(-π/4) =
A) (π/4)^(1/√2){√2/2 ln(4/π -2√2/π}
B) (π/4)^(1/√2){√2/2 ln(4/π+2√2/π}
C) (π/4)^(1/√2){√2/2 ln(π/4 -2√2/π}
D)(π/4)^(1/√2){√2/2 ln(4/π +2√2/π}

23) If y= cos⁻¹{2x/(1+x²)}, then y' is
A) -2/(1+x²)  for all x
B) -2/(1+x²) for all |x|> 1
C) 2/(1+x²) for |x|< 1   D) none

24) If ʸ₀∫ 1/√(1+4t²) dt, then d²y/dx²
A) 2y   B) 4y   C) 8y   D) 6y

25) If f(x)=√(x² -2x +1), then
A) f'(x)= 1 for all x
B) f'(x)= -1 for all x ≤ 1
C) f'(x)= 1 for all x ≥ 1.   D) none

26) If f(x)= √(1- sin2x), then f'(x)=?
A) -(cosx+ sinx), for x ∈ (π/4,π/2)
B) (cosx+ sinx), for x ∈ (0,π/4)
C) -(cosx+ sinx), for x ∈ (0,π/4)
D) (cosx- sinx), for x ∈ (π/4,π/2)

27) If f(x)=|x²-5x+6|, then f'(x)=?
A) 2x-5 for 2<x<3
B) 5- 2x for 2<x<3
C) 2x-5 for 2≤x≤3
D) 5 - 2x for 2≤x≤3

28) If x² + y²= a² and k -1/a, then k is equal to
A) y"/(√(1+y')     B) |y"|/(√(1+y' ²)³
C) 2y"/(√(1+y' ²)  D) y"/(2√(1+y' ²)³

29) If f(x)= sinx and g(x)=s g n sinx, then g'(1) equal to
A) 0 B) - cos 1 C) cos 1 D) none 

30) Let f(x) and g(x) be two functions having finite non-zero 3rd order derivatives f"'(x) and g"'(x) for all x ∈ R. If f(x) g(x)= 1 for all x ∈ R, then f"/f' - g"'/g' is equal to
A) 3(f"/g - g"/f)         B) 3(f"/f - g"/g)
C) 3(g"/g - f"/g)         D) 3(f"/g - g"/f)

31) If y= cos⁻¹{(2 cosx - 3sinx)/√13} then dy/dx is.
A) zero                 B) constant=1 
C) constant≠1    D) none

32) If y= x + eˣ, then y" is
A) eˣ                      B) - eˣ/(1+ eˣ)³
C)  - eˣ/(1+ eˣ)²    C)  1/(1+ eˣ)²

33) If f(x)= 1/x² ˣ₀ ∫ (4t² - 2 F'(t) dt, then F'(4) equal to
A) 32/9    B) 64/3    C) 64/9 D) n

34) If y²= P(x) is a polynomial of degree 3, then 2 dy/dx(y³ d²y/dx²) is
A) P(x)+ P"(x).    B) P(x)
C) P(x) P"'(x).      D) constant

35) 2ˣ+  2ʸ = 2ˣ⁺ʸ, then the value of dy/dx at x=y=1 is
A) 0     B) -1   C) 1        D) 2

36) tan⁻¹[{√(1+x²) - 1}/x] w.r.t. tan⁻¹[{2x √(1-x²)}/(1-2x²)] at x= 0, is
A)1/8   B) 1/4   C) 1/2    D) 1

37) If y= tan⁻¹{log(e/x²)/log(ex²)}] + tan⁻¹{(3+ 2log x)/(1- 6 logx)} then y"
A) 2      B) 1       C) 0       D) -1

38) The expression of dy/dx of the function y= aˣ·······ᵅ is
A) y²/{x(1- y logx)}
B) y²log y/{x(1- y logx)}
C) y²logy /{x(1- y logx logy)}
D) y²logy/{x(1+ y logx logy)}

39) If √(1-x²)+ √(1-y²)= a(x-y), then dy/dx is..
A) √{(1-x²)(1-y²). B) √{(1-y²)/(1-x²)}
C) √{(1-x²)/(1-y²)}   D) none

40) if y= log꜀ₒₛₓsinx , then dy/dx is
A) (cotx log cosx+ tanx log sinx)/(log cosx)²
B) (tanx log cosx+ cotx log sinx)/(log cosx)²
C) (cotx log cosx+ tanx log sinx)/(log sinx)².       D) none

41) xʸ =  eˣ⁻ʸ, then dy/dx is equal to
A) (1+ logx)⁻¹    B) (1+ logx)⁻²
C) logx (1+ logx)⁻².  D) none

42) Let f(x)= x²/(1-x²) , x ≠ 0, ±1, then derivative of f(x) with respect to x is
A) 2x/(1+x²)²      B) 1/(2+x²)³
C) 1/(1- x²)².       D) 1/(2- x²)²

43) If y= ₑsin⁻¹x & u= logx, then dy/du is
A) ₑsin⁻¹x/√(1-x²)    B) x ₑsin⁻¹x
C) (xₑsin⁻¹x)/√(1-x²)   D) none

44) The differential coefficient of log(logx) w.r.t. x is
A) x/(logx)                 B) (logx)/x 
C) 1/(xlogx).             D) x logx

45) The derivative of log |x| is
A) 1/x, x> 0           B) 1/|x|, x≠ 0
C) 1/x, x≠0            D) none

46) If y= sin⁻¹[{√(x+1)+(1-x)})2] w.r.t.x
A) -1/{2√(1-x²)}       B) 1/{2√(1-x²)}
C)  2/{√(1-x²)}         D) -2/{√(1-x²)} 

47)   sec t     tan²t          1 
       t secx     tanx           x        
            1    tanx - tan t    0 then f'(t) is
A) 0  B) -1 C) independent t D) none

48) The differential coefficient of f(logx) where f(x)= logx is
A) x/(logx)        B) 1/x/(xlogx) 
C) (logx)/x        D) none

49) If xᵖ yᑫ = (x+y)ᵖ⁺ᑫ , then dy/dx is..
A) y/x  B)  py/qx. C) x/y  D) qy/px

50) If sec⁻¹{1/(2x²-1)} w.r.t. √(1-x²) at x=1/2.
A) 2     B) 4   C) 1       D) -2

51) y= sec⁻¹{(x+1)/(x-1)}+ sin⁻¹{(x-1)/(x+1), y' is
A) 1 B) (x-1)/(x+1( C) 0 D) (x+1)/(x-1)

52) f(x)= sin(logx) and y= f{(2x+3)/(3-2x)} then f'(x) is.
A) sin(logx).1/(xlogx)
B) 12/(3-2x)² sin[log{(2x+3)/(3-2x)}]
C) sin[log{(2x+3)/(3-2x).  D) none

53) If f(x)=( log꜀ₒₜₓ tanx) (logₜₐₙₓcotx)⁻¹+ tan⁻¹{4x/√(4-x²)} then f'(0) is
A) 2 B) 0   C) 1/2      D) -2

54) If f(x)= eˣ g(x), g(0)=2, g'(0)= 1, then f'(0) is.
A) 1       B) 3       C) 2        D) 0

55) If sin⁻¹{(x²-y²)/(x²+ y²)}= log a, then dy/dx is
A) x/y B) y/x² C) (x²-y²)/(x²+y²) D) y/x

56) y= sec⁻¹{(√x+1)/(√x-1)}+ sin⁻¹{(√x-1)/(√x+1)} then dy/dx
A) 1 B) 0       C) (√x+1)/(√x-1)}
D) (√x-1)/(√x+1)}

57) If x²+ y²=t- 1/t and x⁴ + y⁴= t²+ 1/t² then x³y dy/dx is
A) 0     B) 1   C) -1   D) none

58) If y= tan⁻¹[{√(1+x²)+ √(1-x²)}/{√(1+x²) - √(1-x²)}] then y' is
A) 1/√(1-x⁴)        B) -1/√(1-x⁴)
C) x/√(1-x⁴).       D) -x/√(1-x⁴)

59) ˣₒ∫ f(t) sin {k(x-t)} dt, then d²y/dx² + k²y is..
A) 0       B) y   C) kf(x)  D) k²f(x)

60) If fₙ(x), gₙ(x), hₙ(x), n= 1, 2, 3 are polynomial in x such that fₙ(a) = gₙ(a)= hₙ(a), n= 1, 2, 3 and          
            f₁(x)      f₂(x)        f₃(x)
F(x)=   g₁(x)     g₂(x)       g₃(x) 
            h₁(x)      h₂(x)       h₃(x) then F'(a) is equal to
A) 0            B) f₁(a) g₂(a)  h₃(a)
C) 1            D) none 

61) If x= g(t), y= h(t), then d²y/dx² is
A) (g'h" - h' g")/(g')²
B) (g'h" - h' g")/(g')³
C) g'/h"      D)  h"/g"

62) If y² = ax² + bx+ c where a, b are constants, then y³ d²y/dx² is equal
A) a constant 
B) a function of x 
C)  a function of y
D) a function of x and y both 

63) If x= a cost, y= b sint , then d³y/dx³ is equal to
A) - 3b/a³ cosec⁴t cot⁴t
B) 3b/a³ cosec⁴t cott
C) - 3b/a³ cosec⁴t cott
D) none

64) If y= sinx + eˣ, then d²y/dx² is..
A) 1/(-sinx + eˣ)
B) (sinx - eˣ)/(cosx + eˣ)²
C) (sinx - eˣ)/(cosx + eˣ)³
D) (sinx + eˣ)/(cosx + eˣ)³

65) If variable x and y are related by the equation x ʸ₀ ∫ du/√(1+9y²) then dy/dx is..
A) 1/√(1+9y²).  B) √(1+9y²)
C) (1+9y²).        D) 1/(1+9y²)

66) The differential coefficient of ₐ log₁₀cosec⁻¹x is 
A) ₐ log₁₀cosec⁻¹x /cosec⁻¹x .1/{x√(x²-1)} log₁₀a
B) - ₐ log₁₀cosec⁻¹x /cosec⁻¹x .1/{|x|√(x²-1)} log₁₀a
C) - ₐ log₁₀cosec⁻¹x /cosec⁻¹x .1/{|x|√(x²-1)} logₐ10
D)  ₐ log₁₀cosec⁻¹x /cosec⁻¹x .1/{x√(x²-1)} logₐ10

67) If f(x)= tan⁻¹[{log(e/x²)}/{log(ex²)}] + tan⁻¹{(3+ 2 logx)/(1-6 logx)}, then dⁿy/dxⁿ 
A) tan⁻¹{log xⁿ)} B) 0 C) 1/2 D) n

68) If y= sin²a+ cos²(a+b)+ 2 sina sin b cos (a-b), then d³y/dx³ is
A) sin²(a+b)/cosa
B) cos(a+3b).     C) 0   D) none

69) If y= cos2x cos3x, then yₙ is
equals to 
A) 6ⁿ cos(2x + nπ/2) cos(3x + nπ/2)
B)6ⁿ sin(2x + nπ/2) cos(3x + nπ)/2
C) 1/2[5ⁿsin(5x +nπ/2) +sin(x+π/2)]
D) none

70) If f(x)= (x+1)tan⁻¹(e⁻²ˣ), then f'(0) is...
A) π/2+ 1 B) π/4 - 1 C) π/6+ 5 D) n

71) If f(x)= 3. ₑx², then f'(x)= 2x f(x) + 1/3 f(0)- f'(0) is equals to
A) 0  B) 1 C) 7/3  ₑx² D) none

72) If y= c. ₑx/(x-a), then dy/dx is
A) a(x-a)².             B) - ay/(x-a)² 
C) a²(x-a)².            D) none

73) A curve is given by the equations x= a cost + 1/2 b cos2t, y= a sint + 1/2 b sin2t. Then the points for which d²y/dx²= 0 are given by
A) sint= (2a²+b²)/5ab
B) tan t= (3a²+ 2b²)/4ab
C) cos t= (a²+ 2b²)/3ab.  D) none

74) If ¹⁾ᵐ = [x + √(1+x²)] then (1+x²) y₂ + xy₁ is equals to 
A) m²y B) my² C) m²y² D) none

75) If eʸ + xy= e , then d²y/dx² at x= 0
A) 1/e  B) 1/e². C) 1/e³. D) none

76) If √(x +y)√(y - x)= c, then d²y/dx²
A) 2/c B) -2/c²  C) 2/c². D) none

77) If ax² + 2hxy + by²= 1 then d²y/dx² is
A) (h²+ab)/(hx+ by)²
B) (h²- ab)/(hx+ by)²
C) (h²+ab)/(hx+ by)³
D) (h²- ab)/(hx+ by)³

78) If f(x)= ₓ² (logx), then f'(x) at x= e is
A) 0    B) 1   C) 1/e   D) 1/2e

79) The differential coefficient of f(logx) w.r.t.x where f(x)= logx is
A) x/(logx)   B) (logx)/x 
C) 1/(x logx) D) none

80) The derivative of the function cos⁻¹[cos 2x)¹⁾²] at x=π/6 is
A) (2/3)¹⁾² B) (1/3)¹⁾² 
C) 3¹⁾²        D) 6¹⁾² 

81) Differential coefficient of sec(tan⁻¹x) is
A) x/(1+x²).       B) x √(1+x²)
C) 1/√(1+x²).       D) x/√(1+x²)

82) If f(x)= tan⁻¹{(1+sinx)/(1-sinx)}, 0≤ x ≤π/2, then f'(π/6) is
A)-1/4  B) -1/2  C) 1/4  D) 1/2

83) If y= (1+ 1/x)ˣ then dy/dx is
A) (1+ 1/x)ˣ[log(1+ 1/x) - 1/(x+1)]
B) (1+ 1/x)ˣ log(1+ 1/x) 
C) (x+ 1/x)ˣ[log(x+ 1) - x/(x+1)]
D) (x+ 1/x)ˣ[log(1+ 1/x) - 1/(x+1)]

84) If xʸ = eˣ⁻ʸ, dy/dx is
A) (1+x)/(1+ logx)
B) (1- logx)/(1+ logx)
C) not defined
D) logx)/(1+ logx)²

85) lim ₓ→₁₊ {√(x+1)+ √(x-1)}/√x²-1)=
A) 1/2     B) √2   C) 1  D) 1/√2 

86) If x= a cos³t,.y= a sin³t, √(1+ (dy/dx)²)=
A) tan²t B) sec²t C) sect D) |sect|

87) If y= sin⁻¹{(1-x²)/(1+x²), then dy/dx=
A) -2/(1+x²)           B) 2/(1+x²) 
C) 1/(2- x²)            D) 2/(2 -x²) 

88) sec{1/(2x²+1)} w.4.t. √(1+3x) at x=-1/3
A) doesn't exist B) 0 C) 1/2 D) 1/3

89) for the curve√x +√y= 1, dy/dx at (1/4,1/4) is
A) 1/2    B) 1   C) -1     D) 2 

90) If sin(x+y)= log(x+y), then dy/dx = 
A) 2  B)) -2    .C) 1    D) -1

91) Let U= sin⁻¹{2x/(1+x²)} and V= tan ⁻¹{2x/(1-x²)}, then dU/dV is
A) 1/2 B) x C) (1-x²)(1+ x²)  D) 1

92) If x= a cos nt - b sin nt, then d²y/dx² is
A)n²x B) -n²x C) -nx D) nx

93) d/dx [tan⁻¹{cosx/(1+sinx)}=
A)1/2     B) -1/2   C) 1    D) -1

94) d/dx[log{eˣ.{(x-2)/(x+2)}³⁾⁴}]=
A) (x² -1)/(x² -4)
B) 1    C) (x² +1)/(x² -4)
D) eˣ{(x² +1)/(x² -4)}

95) If y= √(sinx + y), then dy/dx
A) sinx/(2y-1).      B) sinx/(1-2y)
C) cosx/(1-2y).     D) cosx/(2y-1)

96) x= at² ,.y= 2at, then d²y/dx²=
A) -1/t²   B) 1/2at³ C) -1/t³ D)-1/2at³

97) if y= axⁿ⁺¹ + bx⁻ⁿ , then x² d²y/dx²=
A) n(n-1)y.        B) n(n+1)y.  
C) ny                  D) n²y

98) d²⁰/dx²⁰ (2 cosx cos3x)=
A) 2²⁰(cos2x - 2²⁰cos3x)
B) 2²⁰(cos2x + 2²⁰cos 4x)
C) 2²⁰(sin2x + 2²⁰ sin 4x)
D) 2²⁰(sin 2x - 2²⁰ sin 4x)

99) If y= a + bx², a, b arbitrary constants, then
A) d²y/dx²= 2xy
B) xd²y/dx²= dy/dx
C) xd²y/dx² - dy/dx+ y= 0
D) xd²y/dx²= 2xy

100)  If 3 sin(xy) + 4 cos(xy)= 5, then dy/dx=
A) -y/x
B) (3sin(xy)+4 cos(xy))/(3cos(xy) - 4 sin(xy))
C) (3cos(xy)+4 sin(xy))/(4cos(xy) - 3 sin(xy)).      D) none

101) If siny = x sin(a+y), then dy/dx 
A) sina/{sina sin²(a+y)}
B) sin²(a+y)/sin a
C) sina  sin²(a-y)}
D)  sin²(a+y)/sina

102) Cos⁻¹(2x² -1) w.r.t. cos⁻¹x is
A) 2 B) 1/{2√(1-x²)} C) 2/x D) 1- x²


FILL IN THE BLANKS:


1) If y= f{(2x-1)/(x²+1)} and f'(x)= sin x², then dy/dx= ____

2) If f(x)= logₓ(logₑx(, then f'(x) at x= e is _____

3) If f(x)= |x -2| and g(x)= f o f(x), then for x> 20 g'(x)= ____

4) If f(x)=|x - a| and g(x)= = f(f(f(x))), then g'(x)= ___ for x> 4a.

5) If f(x)= log tan{(2x+1)/4}, then f'(0)= _____

6) If y= (e²ˣ -1)/(e²ˣ +1), then y² + dy/dx= _____

7) If y=√[x+ √{y+ √(x+ √(y+...∞))}] then dy/dx is equal to____

8) If d/dx{(1+x²+ x⁴)/(1+x+ x²)}= ax + b, then a = ____, b= ____.

9) If y= sin⁻¹x satisfies the equation (1-x²) y₂ = f(x) y₁ , then f(x)=_____

10) If y= log{x+√(1+x²)}, then y₂(0)=______

11) If f(x)= sin(log x) and y= f{(2x+3)/(3-2x)}, then dy/dx=-----

               TRUE/FALSE

1) if xy = c² where c is constant and if u is any function of x, then x dy/dx + y du/dc= 0

2) If x=f(t) and y= g(t) and if d²y/dx²= 0 , then dx/dy . d²y/dt²= dy/dx. d²x/dt².

3) If y= tan⁻¹{4x/(1+5x²)} + tan⁻¹{(2+3x)/(3-2x)}, then dy/dx= 5x/(1+25x²)

4) If u= ax+ b, then dⁿ/dxⁿ [f(ax+b)] is equal to aⁿ. dⁿ/duⁿ[f(u)].


                  EXERCISE -2

‌1) If x= √t + 1/√t, then 2t dx/dt + x 
A) √t    B) 2√t     C) 3√t     D) none

2) If (x+4)y= x, then x dy/dx + y(y-1) is
A) 1      B) 2       C) 1/2      D) none

3) If y= xⁿ⁻¹ logx, then x dy/dx +(1-n)y is
A) xⁿ⁻¹   B) xⁿ⁻²    C) nxⁿ⁻¹   D) none

4) If y= 6x⁴ + 4x³ - 24x² - 36x+ 21 and dy/dx at x= 2 is 12 then a is..
A) 1       B) 2      C) 3        D) 4

5) if y= 1/(x ᑫ⁻ᵖ + x ʳ⁻ᵖ) + 1/(1+ x ᵖ⁻ᑫ + x ʳ⁻ᑫ) + 1/(1+ x ᵖ⁻ʳ +x ᑫ⁻ʳ) then dy/dx is
A) x ᵖ⁺ᑫ⁺ʳ  B) 1/(p+q+r)  C) 1   D) 0

6) If y= (1+sinx)/cosx, then cosx dy/dx is..
A) sin²x   B)1+y   C) y    D) none

7) If x²+ y²= 4, then y dy/dx + x is
A) 4    B) 0    C) -1      D) none

8) y= x ˣ (x >0), then dy/dx is..
A) y(1+logx).             B) (1+logx)
C) y logx                    D) x(1+logx)

9) If y= 2x tan⁻¹x - log(1+x²) then dy/dx = k tan⁻¹x where the value of k is
A) 1     B) 1/2     C) 1/3.       D) 2

10) y= sin x°, then dy/dx = π/180 cost where t is equal to
A) x    B) x ᶜ    C) x/180  D) πx/180

11) If y= log(logx), then dy/dx= k/(logx) where k is..
A) x       B) 1       C) 1/x.      D) none

12) Let y= sin⁻¹(cosx). Then
A) dy/dx= -1 when sinx < 0
B) dy/dx= 1 when sinx > 0
C) dy/dx does not exist at x=π
D) dy/dx does not exist anywhere

13) cosx ={1-t²)/(1+t²)}, tany ={(3t-t³)/(1-3t³)} (0< t <1/√3), then dy/dx is 
A) 1    B)1/2     C) 3/2.        D) 2

14) If x⁶y²= (x + y)⁸, then dy/dx is
A) x/y.   B) y/x      C) - y/x.      D) 1

15) If x²+ y²= t+ 1/t and x⁴ +y⁴=t²+ 1/t², then dy/dx is
A) -1/x³y B) 1/x³y C) x³/y D) -y/x³

16) If y= cos[2 sin⁻¹(cosx), then dy/dx is
A) 4sinx cosx.                 B) sin2x
C) 2 cos2x                       D) none

17) If y= log(secx + tanx), then dy/dx is..
A)sinx B) cosx C) secx D) Cosecx

18) If y= log tan(π/4+ x/2), then dy/dx is
A) secx B) tanx C) Cosecx D) n

19) If y= log(log(logx)), then dy/dx is..
A) (log(logx)). B) logx (log(logx))
C) 1/(x log(log(logx)))
D) 1/(logx(log(logx)))

20) If y= (tanx)ˢᶦⁿˣ then dy/dx ₓ₌π/4 is equal to
A) √2   B) 1/√2.  C) 2.  D) none

21) e ˣʸ - 4xy = 4, then dy/dx is
A) x/y. B) y/x C) - x/y D) -y/x

22) If y= eʸ + xy = e, then dy/dxₓ₌₀ is equal to.
A) e      B) -1/e       C) 1/e.     D) -e

23) A differentiable function f is defined for all x> 0 and f(x²)= x³ for a x> 0. Then f'(16) is 
A) 1      B) 4       C) 6    D) 16

24) If x= log(1+t²), y= t - tan⁻¹ t, then dy/dx= 
A) 1    B) 1/2   C) t/2   D) t

25) If x⁷ y³ = (x+y)¹⁰, then d²y/dx²
A)0     B) 1   C) 10   D) x²y² 

26) If y= cot⁻¹x, then d²y/dx²|ₓ₌₁is
A) 1/3   B) 1/2    C) 1    D) 5/2 

27) If y= (cos⁻¹x)², then (1- x²) d²y/dx² is..
A) 0     B) 1      C) 2     D) 4

28) If y= sin(2 sin⁻¹x), then (1-x²) d²y/dx² - x dy/dx + 4y is
A) 0    B) 2y   C) -2y   D) none

29) If y= f(x) and x= 1/z, then d²f/dx² = 2z³ dy/dz + k d²y/dz² where k is equal to
A) -2     B) 2    C) 2z⁴     D) z⁴ 

30) If f(x)=x³ cos(1/x), when x ≠0
                = 0, when x= 0, then
A) f'(0)=0= f"(0)
B) f"(x)|ₓ₌₀ does not exist
C) f'(x)ₓ₌₀ does not exist  D) N

31) If x= e ᵗ and y= sint, then d²y/dx²|ₜ₌π/4
A) does not exist      B) equal e²
C) equals - e^(-π)      D) equal e^(π)

32) If y= ₑ m sin⁻¹x, then (1-x²) d²x/dx² - x dy/dx - ky = 0 where k is equal to
A) m²  B) 2  C) -1  D) D) - m².

33) If y= sin⁻¹x, then (1-x²)y₂/y₁
A) x   B) x²   C) 2x    D) none

34) If y⁴ + 5xy + y= 2, then d²y/dx²| ₓ₌₀ ,ᵧ₌₀is equal to
A) 2/5 B) -2/5 C) 1/5 D) -1/5

35) If y²= 4ax, then d²y/dx² . d²x/dy² is equal to
A) 1 B) a C) -2a/y³ D) -a/y²

36) Let f(x-y)= f(x)/f(y) for all reals x, y and f'(0)= p, f'(5)= q. Then f'(-5) is 
A) q B) -q C) 0 D) none

37) If ₑsin⁻¹x, z= ₑ - cos⁻¹x, then dy/dz
A) doesn't exist finitely
B) is equal to eˣ 
C) exists and is independent of x
D) exists and is a function of x

38) If f(a)=2, f'(a)=1, g(a)= -1, g'(a)= 2, then the value of
lim ₓ→ₐ (g(x)f(a) - g(a)f(x))/(x -a) is equal to
A) -1 B) 5 C) 1/2 D) 2a 

39) If y= 4 cos 5x, then d²y/dx² = ky , where k is equal to
A) 5 B)-5 c) 25 D) -25

40) The derivative of f(logx) with respect to x, where f(x)= logx, is equal to 
A) 1/x B)1/(x logx) C) 1/logx D) x logx

41) If g(x)= log₅ log₃ x, then g'(e) is equal to
A) e log 5 B) e log 3
C) 1/(e log 5) D) 1/(e log 3)

42) If g is the inverse of f and f'(x)=1/(1+x³), then g'(x) is ..
A) (1+3x²) B) 1/{1+[g(x)]³} 
C) 1+[g(x)]³ D) [g(x)]³ - 1

43) If f(x)= | cosx |, then f'(3π/4) is equal to
A) 1/√2 B) -1/√2 C) √2. D) 1

44) Given that (f(x))ⁿ = f(nx) for all x. Then f'(x) f(nx) is equal to
A) xⁿ B) nxⁿ⁻¹ C) f(x) D) f(x)f'(nx). 

45) If xʸ = eˣ⁻ʸ, then dy/dx is
A) x/(logx)². B) logx/(1+ logx)²
C) (1+x)/(1-x) D) none

46) If xᵐ yⁿ = (x+y)ᵐ⁺ⁿ , then dy/dx is equal to
A) xy B) x/y C) y/x D) (x+y)/xy

47) Let f(x + y)= f(x) f(y) for all x, y. If f'(0) exists and f(0) ≠ 0, then for all x, f'(x) exists and equal to
A) f(x)f'(0). B) f'(0)/f(x)
C) f(x)/f'(0) D) none

48) If f'(a) and g'(a) exists for two functions f(x) and g(x) at x= a, then lim ₓ→ₐ {g(x)f(a)- f(x)g(a)}/{g(x) - g(a)} equal
A){g(a)f'(a)- f(a)g'(a)}/g'(a)
B) {f(a)g'(a)- g(a)f'(a)}/g'(a)
C) {g(a)f'(a)- f(a)g'(a)}/f(a). D) n

49) If y= 2 sin⁻¹√(1-x) + sin⁻¹{2√(x(1-x))} for 0 < x< 1/2, then dy/dx is equal to
A) 2/√(x(1-x)) B) √{(1-x)/x}
C) -1/√{x(1-x)} D) 0

50) Let f(x)= |sin³x| and g(x)= sin³x then in (-π/2, π/2) which of the following is true?
A) g'(x)= [f'(x)], for all x belongs to (-π/2, π/2)
B) f'(x)= g'(x), for all x belongs to (-π/2, π/2)
C) f'(x)= g'(x), for all x belongs to (-π/2, π/2). D) none

51) If f(x)= sinx, g(x) = x², h(x)= logx and p(x) = h(g(f(x))), then d²p/dx² is equal to
A) 2x cot²x B) 2x cot x²
C) - 2 cosec²x D) 2 cosecx²

52) For x> 0, if g(x)= x ˡᵒᵍ and f(x)=ₑg(x) , then f'(x) is equal to
A) x ²ˡᵒᵍ ˣ ⁻¹ B) (1+x)e
C) 2xˡᵒᵍ ˣ ⁻¹ logx f(x) D) none

53) The function f(x)= 1/{1+|x|}
A) is differential at all real x.
B) is differential at all real except ± x.
C) is differential at all real 0
D) satisfies none of these

54) f"(x)= - f(x) and g(x)= f'(x) and F(x) = f²(x/2) + g²(x/2) and given that F(5)= 5, then F(10) is equal to
A) 5 B) 10 C) 0 D) 15

55) If f(x) = min {1, x,x²}, then
A) f(x) is continuous for all reals 
B) f'(x) > 0 for all x > 1
C) f(x) is continuous for all real x but is not differentiable for atleast one x 
D) f(x) is not differentiable for two values of x 







No comments:

Post a Comment